cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 235 results. Next

A371638 a(n) = 2*n + valuation(n, 3) with valuation(n, 3) = A007949(n).

Original entry on oeis.org

2, 4, 7, 8, 10, 13, 14, 16, 20, 20, 22, 25, 26, 28, 31, 32, 34, 38, 38, 40, 43, 44, 46, 49, 50, 52, 57, 56, 58, 61, 62, 64, 67, 68, 70, 74, 74, 76, 79, 80, 82, 85, 86, 88, 92, 92, 94, 97, 98, 100, 103, 104, 106, 111, 110, 112, 115, 116, 118, 121, 122, 124, 128, 128
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

See A371639 for the connection with Voronoi's congruence.

Crossrefs

Cf. A007949, A371639, A292608 (c=2).

Programs

  • Maple
    A371638 := n -> 2*n + padic:-ordp(n, 3): seq(A371638(n), n = 1..64);
  • Mathematica
    Array[2 # + IntegerExponent[#, 3] &, 64] (* Michael De Vlieger, Mar 31 2024 *)
  • SageMath
    def A371638(n): return 2 * n + valuation(n, 3)
    print([A371638(n) for n in range(1, 65)])

Formula

a(n) = valuation(denominator(Voronoi(3, n))) where Voronoi(c, n) = ((c^n - 1) * bernoulli(n)) / (n * c^(n - 1)).

A373593 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n<=3) = n, f(p) = 0 for primes p > 3, and for composite n, f(n) = [A007949(n), A046523(A248909(n)), A046523(A343430(n))].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 7, 12, 6, 13, 5, 14, 7, 15, 16, 10, 5, 17, 4, 12, 18, 19, 5, 20, 7, 21, 6, 10, 12, 22, 7, 12, 16, 23, 5, 24, 7, 15, 14, 10, 5, 25, 26, 15, 6, 19, 5, 27, 10, 28, 16, 10, 5, 29, 7, 12, 30, 31, 12, 20, 7, 15, 6, 32, 5, 33, 7, 12, 11, 19, 12, 24, 7, 34, 35, 10, 5, 36, 10, 12, 6, 23, 5, 37, 38, 15, 16, 10, 12, 39, 7, 40, 14, 41
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2024

Keywords

Comments

Restricted growth sequence transform of the function f given in the definition.
For all i, j >= 1:
a(i) = a(j) => A373595(i) = A373595(j),
a(i) = a(j) => A353815(i) = A353815(j),
a(i) = a(j) => A353816(i) = A353816(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007949(n) = valuation(n,3);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A248909(n) = { my(f=factor(n)); for(k=1, #f~, if(1!=(f[k,1]%3), f[k,1]=1)); factorback(f); };
    A343430(n) = { my(f=factor(n)); for(k=1, #f~, if(2!=(f[k,1]%3), f[k,1]=1)); factorback(f); };
    Aux373593(n) = if(n<3, n, [A007949(n), A046523(A248909(n)), A046523(A343430(n))]);
    v373593 = rgs_transform(vector(up_to, n, Aux373593(n)));
    A373593(n) = v373593[n];

A373595 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n<=3) = n, f(p) = 0 for primes p > 3, and for composite n, f(n) = [A007949(n), A373591(n), A373592(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 4, 5, 9, 5, 10, 6, 11, 5, 12, 5, 7, 13, 4, 5, 14, 4, 10, 15, 16, 5, 9, 5, 17, 6, 4, 10, 18, 5, 10, 13, 11, 5, 19, 5, 7, 12, 4, 5, 20, 21, 7, 6, 16, 5, 22, 4, 23, 13, 4, 5, 14, 5, 10, 24, 25, 10, 9, 5, 7, 6, 16, 5, 26, 5, 10, 9, 16, 10, 19, 5, 17, 27, 4, 5, 28, 4, 10, 6, 11, 5, 18, 21, 7, 13, 4, 10, 29, 5, 30, 12, 11, 5, 9, 5, 23, 19
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2024

Keywords

Comments

Restricted growth sequence transform of the function f given in the definition.
For all i, j > 1:
A305900(i) = A305900(j) => A373594(i) = A373594(j) => a(i) = a(j),
A373593(i) = A373593(j) => a(i) = a(j),
a(i) = a(j) => b(i) = b(j), where b can be (but is not limited to) any of the sequences listed at the crossrefs-section, under "some of the matched sequences".

Crossrefs

Some of the matched sequences (see comments): A001222, A359430, A369643, A369658, A373371, A373383, A373474, A373491, A373493, A373585, A373588, A373596.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007949(n) = valuation(n,3);
    A373591(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%3)*n[2, i]);
    A373592(n) = sum(i=1, #n=factor(n)~, (2==n[1, i]%3)*n[2, i]);
    Aux373595(n) = if(n<=3, n, if(isprime(n), 0, [A007949(n), A373591(n), A373592(n)]));
    v373595 = rgs_transform(vector(up_to, n, Aux373595(n)));
    A373595(n) = v373595[n];

A381838 k/9 is in this list if A053735(k) < A007949(k), i.e. if digitsum(k, 3) < valuation(k, 3).

Original entry on oeis.org

1, 3, 6, 9, 12, 18, 27, 30, 36, 45, 54, 63, 81, 84, 90, 99, 108, 117, 135, 162, 171, 189, 216, 243, 246, 252, 261, 270, 279, 297, 324, 333, 351, 378, 405, 432, 486, 495, 513, 540, 567, 594, 648, 729, 732, 738, 747, 756, 765, 783, 810, 819, 837, 864, 891, 918, 972, 981, 999
Offset: 1

Views

Author

Peter Luschny, Mar 08 2025

Keywords

Crossrefs

Cf. A371176 (base 2), A381837 (base 4), A381836 (base 5).

Programs

  • Maple
    aList := upto -> local k; [seq(k/9, k in select(n -> add(convert(n, base, 3)) < padic[ordp](n, 3), [seq(9..upto,9)]))]: aList(9000);
  • Mathematica
    Select[Range[9000],DigitSum[#,3]Stefano Spezia, Mar 08 2025 *)
  • SageMath
    def aList(upto, b): return [n/b^2 for n in srange(b^2, upto, b^2) if sum(n.digits(b)) < valuation(n, b)]
    print(aList(9000, 3))

A127427 a(n) = v_3( (6n)! ) - v_3( (3n)! ), where v_3(N) is the 3-adic valuation A007949(N).

Original entry on oeis.org

0, 1, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57, 58, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 107
Offset: 0

Views

Author

N. J. A. Sloane, Apr 02 2007

Keywords

Crossrefs

Essentially partial sums of A127427.

Programs

  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n, 3]; a[n_] := (3*n + s[3*n] - s[6*n])/2; Array[a, 100, 0] (* Amiram Eldar, Feb 21 2021 *)
  • PARI
    a(n) = valuation((6*n)!, 3) - valuation((3*n)!, 3); \\ Michel Marcus, Jul 29 2017

Formula

a(n) - n = a( [(n+1)/3] ).
a(n) = (3*n + A053735(n) - A053735(6*n))/2. - Amiram Eldar, Feb 21 2021

A229290 n is in the sequence if n is prime, (n-1)/3^A007949(n-1) is a squarefree number, A007949(n-1) < 3 and every prime divisor of n-1 is in the sequence.

Original entry on oeis.org

2, 3, 7, 19, 43, 127, 2287, 4903, 5419, 13723, 14479, 82339, 98299, 101347, 304039, 617767, 688087, 1676827, 3735583, 3736087, 4130323, 4324363, 4693267, 4951819, 10621603, 11032999, 11208259, 11554243, 11737783, 12198859, 26152603, 26563939, 28159603
Offset: 1

Views

Author

Keywords

Comments

If n is in A226961 then n is some product of elements of this sequence.

Crossrefs

Programs

  • Mathematica
    fa = FactorInteger; free[n_] := n == Product[fa[n][[i, 1]], {i,
      Length[fa[ n]]}]; Os[b_, 1] = True; Os[b_, 2] = True; Os[b_, b_] = True; Os[b_, n_] := Os[b, n] = PrimeQ[n] && free[(n-1)/ b^IntegerExponent[n - 1,  b]] && IntegerExponent[n - 1, b] < 3 && Union@Table[Os[b, fa[n - 1][[i,1]]], {i, Length[fa[n - 1]]}] == {True}; G[b_] := Select[Prime[Range[2000]], Os[b, #] &]; G[3]

A336069 Decimal expansion of the asymptotic density of numbers k divisible by A007949(k) (A336068).

Original entry on oeis.org

2, 8, 7, 1, 0, 6, 1, 3, 1, 8, 6, 6, 3, 4, 7, 1, 7, 3, 2, 2, 2, 8, 6, 1, 0, 3, 8, 3, 0, 0, 4, 9, 5, 5, 1, 0, 5, 9, 1, 4, 4, 3, 8, 1, 2, 3, 0, 9, 3, 8, 8, 9, 0, 6, 1, 0, 5, 5, 9, 2, 6, 9, 5, 7, 1, 0, 3, 8, 1, 4, 2, 1, 3, 2, 1, 0, 9, 1, 2, 0, 9, 0, 1, 9, 0, 3, 4
Offset: 0

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Examples

			0.287106131866347173222861038300495510591443812309388...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2 * Sum[1/k/3^(k + 1 - IntegerExponent[k, 3]), {k, 1, 1000}], 10, 100][[1]]

Formula

Equals 2 * Sum_{k>=1} 1/(k * 3^(k - A007949(k) + 1)).

A340683 a(n) = A007949((A003961(A003961(n))+1)/2), where A003961 shifts the prime factorization of n one step towards larger primes, and A007949(x) gives the exponent of largest power of 3 dividing x.

Original entry on oeis.org

0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 3, 1, 3, 1, 1, 0, 0, 1, 4, 0, 0, 1, 0, 1, 1, 1, 0, 2, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 3, 0, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 3, 0, 0, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2021

Keywords

Crossrefs

Programs

Formula

A358747 Lexicographically earliest infinite sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = [A007814(n), A007949(n), A324198(n)] when n > 1, with f(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 2, 11, 12, 5, 13, 5, 14, 3, 2, 5, 15, 16, 2, 17, 4, 5, 6, 5, 18, 3, 2, 19, 20, 5, 2, 3, 21, 5, 22, 5, 4, 23, 2, 5, 24, 19, 25, 3, 4, 5, 26, 27, 28, 3, 2, 5, 10, 5, 2, 29, 30, 5, 6, 5, 4, 3, 31, 5, 32, 5, 2, 33, 4, 19, 6, 5, 34, 35, 2, 5, 36, 27, 2, 3, 7, 5, 13, 19, 4, 3, 2, 5, 37, 5, 38, 8, 14, 5, 6, 5, 7, 39
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2022

Keywords

Comments

For all i, j: A305900(i) = A305900(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    Aux358747(n) = if(1==n,n,[A007814(n), A007949(n), A324198(n)]);
    v358747 = rgs_transform(vector(up_to, n,Aux358747(n)));
    A358747(n) = v358747[n];

A374040 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003415(n), A085731(n), A007814(n), A007949(n)], for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 11, 12, 13, 5, 14, 5, 15, 16, 17, 5, 18, 19, 20, 21, 22, 5, 23, 5, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 5, 33, 34, 35, 5, 36, 37, 38, 39, 40, 5, 41, 42, 43, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 55, 5, 56, 57, 58, 50, 59, 5, 60, 61, 62, 5, 63, 64, 65, 66, 67, 5, 68, 69, 70, 71, 72, 73, 74, 5, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2024

Keywords

Comments

Restricted growth sequence transform of the quadruple [A003415(n), A085731(n), A007814(n), A007949(n)].
For all i, j >= 1:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A322026(i) = A322026(j),
a(i) = a(j) => A369051(i) = A369051(j) => A083345(i) = A083345(j),
a(i) = a(j) => b(i) = b(j), where b can be any of the sequences listed at the crossrefs-section, under "some of the other matched sequences".

Crossrefs

Some of the other matched sequences (see comments): A083345, A359430, A369001, A369004, A369643, A369658, A373143, A373474, A373483.
Cf. also A322026, A353521, A369051, A373268, A372573, A374131 for similar and related constructions.
Differs from A305900 first at n=77, where a(77) = 50, while A305900(77) = 59.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    Aux374040(n) = { my(d=A003415(n)); [d, gcd(n,d), valuation(n,2), valuation(n,3)]; };
    v374040 = rgs_transform(vector(up_to, n, Aux374040(n)));
    A374040(n) = v374040[n];
Previous Showing 11-20 of 235 results. Next