A348189 Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.
1, 0, 0, 2, 0, 6, 8, 24, 60, 148, 396, 1026, 2744, 7350, 19872, 54102, 148104, 407682, 1127328, 3130542, 8726256, 24407634, 68482776, 192698124, 543642476, 1537443024, 4357677516, 12376868254, 35221087656, 100409367690, 286730523104, 820078634232, 2348966799132
Offset: 1
Keywords
Links
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
Programs
-
Mathematica
a[n_] := SeriesCoefficient[(1 - Sqrt[1-2*x-3*x^2])/(x * (2 + x - Sqrt[1-2*x-3*x^2])), {x, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Oct 06 2021 *)
-
PARI
my(x='x+O('x^35)); Vec((1-sqrt(1-2*x-3*x^2))/(x*(2+x-sqrt(1-2*x-3*x^2)))) \\ Michel Marcus, Oct 06 2021
Formula
G.f.: A(x) = (1 - sqrt(1 - 2*x - 3*x^2))/(x*(2 + x - sqrt(1 - 2*x - 3*x^2))).
If M(x) is the g.f. of A001006, then A(x) = (1 + 2*x*M(x))/(1 + 2*x + 2*x^2*M(x)).
Let M(x) be the g.f. of A001006 and F(x) = 1 + 2*x*M(x) (equivalently, x*F(x) = g.f. of A007971). Then F(-x*A(x)) = 1/F(x).
A(-x*A(x)) = 1/A(x).
G.f.: Let F(x) be the g.f. of A107264, then A(x) = 1 + 2*x^3*A(x)^2*F(x^2*A(x)). - Alexander Burstein, Feb 14 2022
Comments