A066912
Fourth column of the Eulerian triangle A008292 in square array format.
Original entry on oeis.org
0, 1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600
Offset: 0
More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002
A089249
Triangular array read by rows illustrating the connection between A000522 and A008292.
Original entry on oeis.org
1, 3, 4, 6, 16, 11, 10, 40, 55, 26, 15, 80, 165, 156, 57, 21, 140, 385, 546, 399, 120
Offset: 1
The fifth row of the array is 15 80 165 156 57 resulting from A089249 (1 4 11 26 57 ) times ( 15 20 15 6 1)
Row sums = the third diagonal of
A046802.
A125108
Column sums of a Gaussian polynomial-shaped array. Row sums generate the Eulerian array A008292.
Original entry on oeis.org
1, 2, 4, 10, 26, 72, 202, 580
Offset: 1
The column sums begin 1 2 4 10 26 72 202 580 ... because the structure of the Array begin as follows:
1..................................................................
......1............................................................
......1............................................................
............1......................................................
............2......2...............................................
............1......................................................
..................1................................................
..................3......5......3..................................
..................3......5......3..................................
..................1................................................
............................1......................................
............................4.......9.......9.......4..............
............................6.......16......22......16.......6.....
............................4.......9.......9.......4..............
............................1......................................
etc.
A147563
Irregular triangle, T(n, k) = [x^k] p(n, x), where p(n, x) = 4*Sum_{j=0..n} A008292(n+1, j) * (x/2)^j * (1-x/2)^(n-j), read by rows.
Original entry on oeis.org
4, 4, 4, 4, -2, 4, 16, -8, 4, 44, -6, -16, 4, 4, 104, 84, -136, 34, 4, 228, 606, -584, -24, 102, -17, 4, 480, 2832, -1088, -2208, 1488, -248, 4, 988, 11122, 5536, -20840, 8896, 832, -992, 124, 4, 2008, 39772, 74296, -118190, -2144, 51952, -22112, 2764
Offset: 0
Irregular triangle begins as:
4;
4;
4, 4, -2;
4, 16, -8;
4, 44, -6, -16, 4;
4, 104, 84, -136, 34;
4, 228, 606, -584, -24, 102, -17;
4, 480, 2832, -1088, -2208, 1488, -248;
4, 988, 11122, 5536, -20840, 8896, 832, -992, 124;
4, 2008, 39772, 74296, -118190, -2144, 51952, -22112, 2764;
-
A008292:= func< n,k | (&+[(-1)^j*Binomial(n+1, j)*(k-j)^n: j in [0..k]]) >;
T:= func< n,k | (-1/2)^(k-2)*(&+[(-1)^j*Binomial(n-j,k-j)*A008292(n+1,j+1): j in [0..k]]) >;
[Floor(T(n,k)): k in [0..2*Floor(n/2)], n in [0..16]]; // G. C. Greubel, Oct 27 2022; Mar 03 2023
-
(* First program *)
nmax:= 15;
p[x_, n_]= (1-x)^(n+1)*PolyLog[-n, x]/x;
b= Table[CoefficientList[p[x, n], x], {n, nmax+1}];
F[n_]:= CoefficientList[4*Sum[b[[n+1]][[m+1]]*(x/2)^(n-m)*(1-x/2)^m, {m, 0, n}], x];
T[n_]:= If[IntegerQ[F[n]], F[n], Sign[F[n]]*Abs[Round[F[n] - 1/2]]];
Table[T[n], {n, 0, nmax}]//Flatten
(* Second program *)
A008292[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
F[n_, k_]:= (-1/2)^(k-2)*Sum[(-1)^j*Binomial[n-j, k-j]*A008292[n+1, j+ 1], {j,0,k}];
T[n_, k_]:= If[IntegerQ[F[n,k]], F[n,k], Sign[F[n,k]]*Abs[Round[F[n, k] - 1/2]]];
Table[T[n, k], {n,0,16}, {k, 0, 2*Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 03 2023 *)
-
def A008292(n,k): return sum( (-1)^j*binomial(n+1, j)*(k-j)^n for j in range(k+1) )
def A147563(n,k): return floor((-1/2)^(k-2)*sum((-1)^j*binomial(n-j, k-j)*A008292(n+1,j+1) for j in range(k+1)))
flatten([[A147563(n,k) for k in range(2*floor(n/2) + 1)] for n in range(16)]) # G. C. Greubel, Oct 27 2022; Mar 03 2023
A174303
A symmetrical triangle: T(n,k) = A008292(n+1, k) * f(n,k), where f(n,k) = 2^k when floor(n/2) >= k, otherwise 2^(n-k).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 22, 22, 1, 1, 52, 264, 52, 1, 1, 114, 1208, 1208, 114, 1, 1, 240, 4764, 19328, 4764, 240, 1, 1, 494, 17172, 124952, 124952, 17172, 494, 1, 1, 1004, 58432, 705872, 2499040, 705872, 58432, 1004, 1, 1, 2026, 191360, 3641536, 20965664, 20965664, 3641536, 191360, 2026, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 22, 22, 1;
1, 52, 264, 52, 1;
1, 114, 1208, 1208, 114, 1;
1, 240, 4764, 19328, 4764, 240, 1;
1, 494, 17172, 124952, 124952, 17172, 494, 1;
1, 1004, 58432, 705872, 2499040, 705872, 58432, 1004, 1;
-
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Floor(n/2) ge k select 2^k*Eulerian(n+1,k) else 2^(n-k)*Eulerian(n+1,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 15 2019
-
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1,j]*(k-j+1)^n, {j,0,k+1}];
Table[Eulerian[n+1,m]*If[Floor[n/2] >= m, 2^m, 2^(n-m)], {n,0,10}, {m,0,n} ]//Flatten (* modified by G. C. Greubel, Apr 15 2019 *)
-
{eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n)};
for(n=0,10, for(k=0,n, print1(eulerian(n+1,k)*if(floor(n/2)>=k, 2^k, 2^(n-k)), ", "))) \\ G. C. Greubel, Apr 15 2019
-
def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
def T(n,k):
if floor(n/2)>=k: return 2^k*Eulerian(n+1,k)
else: return 2^(n-k)*Eulerian(n+1,k)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 15 2019
A176204
Triangle T(n, k) = 4 * A008292(n+1, k) - 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 41, 41, 1, 1, 101, 261, 101, 1, 1, 225, 1205, 1205, 225, 1, 1, 477, 4761, 9661, 4761, 477, 1, 1, 985, 17169, 62473, 62473, 17169, 985, 1, 1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1, 1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 13, 1;
1, 41, 41, 1;
1, 101, 261, 101, 1;
1, 225, 1205, 1205, 225, 1;
1, 477, 4761, 9661, 4761, 477, 1;
1, 985, 17169, 62473, 62473, 17169, 985, 1;
1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1;
1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1;
-
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
[[4*Eulerian(n+1,k) -3: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 12 2020
-
A008292:= (n,k) -> add((-1)^j*binomial(n+1,j)*(k-j+1)^n, j=0..k+1);
A176204:= (n,k,q) -> 2^q*( A008292(n+1,k) -1) + 1;
seq(seq( A176204(n,k,2), k=0..n), n=0..12); # G. C. Greubel, Mar 12 2020
-
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];
T[n_, m_, q_]:= 2^q*Eulerian[n+1, m] - 2^q +1;
Table[T[n, m, 2], {n,0,12}, {m,0,n}]//Flatten (* modified by G. C. Greubel, Mar 12 2020 *)
-
Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n);
T(n,k,q) = 2^q*Eulerian(n+1,k) - (2^q - 1); \\ G. C. Greubel, Mar 12 2020
-
def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
def T(n,k,q): return 2^q*Eulerian(n+1,k) - 2^q + 1
[[T(n,k,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020
A176492
Triangle T(n,k) = A176492(n,k) + A008292(n+1,k+1) - 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 45, 45, 1, 1, 129, 365, 129, 1, 1, 353, 2293, 2293, 353, 1, 1, 965, 12937, 28397, 12937, 965, 1, 1, 2677, 69261, 290993, 290993, 69261, 2677, 1, 1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1, 1, 21705, 1852053, 22618437
Offset: 0
1;
1, 1;
1, 13, 1;
1, 45, 45, 1;
1, 129, 365, 129, 1;
1, 353, 2293, 2293, 353, 1;
1, 965, 12937, 28397, 12937, 965, 1;
1, 2677, 69261, 290993, 290993, 69261, 2677, 1;
1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1;
, 21705, 1852053, 22618437, 72034125, 72034125, 22618437, 1852053, 21705, 1;
1, 63117, 9421457, 182707997, 926399717, 1558541213, 926399717, 182707997, 9421457, 63117, 1;
-
A176492 := proc(n,k)
A176491(n,k)+A008292(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A177823
Triangle of Eulerian numbers squared: A008292(n,m)^2 read by rows.
Original entry on oeis.org
1, 1, 1, 1, 16, 1, 1, 121, 121, 1, 1, 676, 4356, 676, 1, 1, 3249, 91204, 91204, 3249, 1, 1, 14400, 1418481, 5837056, 1418481, 14400, 1, 1, 61009, 18429849, 243953161, 243953161, 18429849, 61009, 1, 1, 252004, 213393664, 7785238756, 24395316100, 7785238756, 213393664, 252004, 1, 1, 1026169
Offset: 1
1;
1, 1;
1, 16, 1;
1, 121, 121, 1;
1, 676, 4356, 676, 1;
1, 3249, 91204, 91204, 3249, 1;
1, 14400, 1418481, 5837056, 1418481, 14400, 1;
-
<< DiscreteMath`Combinatorica`;
a = Table[Table[Eulerian[n + 1, m]^2, {m, 0, n}], {n, 0, 10}];
Flatten[%]
A178048
Triangle T(n, m) = ( |-A008292(n+1,m+1)^2 + 2*binomial(n, m)^2| + A008292(n+1,m+1)*binomial(n, m) )/2 read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 68, 68, 1, 1, 374, 2340, 374, 1, 1, 1742, 47012, 47012, 1742, 1, 1, 7524, 717948, 2942288, 717948, 7524, 1, 1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1, 1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1
Offset: 0
The triangle starts in row n=0 with columns 0 <= m <= n as
1;
1, 1;
1, 8, 1;
1, 68, 68, 1;
1, 374, 2340, 374, 1;
1, 1742, 47012, 47012, 1742, 1;
1, 7524, 717948, 2942288, 717948, 7524, 1;
1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1;
1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1;
-
A178048 := proc(n,m) binomial(n,m)*A008292(n+1,m+1)+abs( -A008292(n+1,m+1)^2+2*binomial(n,m)^2) ; %/2; end proc:
seq(seq(A178048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Nov 26 2010
-
<< DiscreteMath`Combinatorica`
t[n_, m_] = (Abs[2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2] + Binomial[n, m]*Eulerian[n + 1, m])/2;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
A178232
A triangle sequence derived from setting an Euler numbers A122045 generalization equal to the Eulerian numbers A008292 to get a generating function expansion: p(x,t) = ((-1 + exp(x)) (-1 + x)/(-1 + exp(t*x) + t - exp(t)* x)).
Original entry on oeis.org
0, 0, 1, 6, 1, 1, 36, 8, 3, 7, 1, 240, 60, -20, 81, 11, 21, 1, 1800, 480, -510, 822, 143, 173, 123, 51, 1, 15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1, 141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1
Offset: 0
{0},
{0},
{1},
{6, 1, 1},
{36, 8, 3, 7, 1},
{240, 60, -20, 81, 11, 21, 1},
{1800, 480, -510, 822, 143, 173, 123, 51, 1},
{15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1},
{141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1},
{1451520, 423360, -1391040, 1103760, 763056, -585432, 527544, 71353, 82513, 107377, 39589, 36349, 11947, 493, 1},
{16329600, 4838400, -19504800, 13940640, 13361040, -12088080, 7137270, 2643650, -749001, 2527719, 165459, 900099, 256743, 251073, 41883, 1003, 1}
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 78-79.
- L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 245.
-
p[t_] = ((-1 + Exp[x]) (-1 + x)/(-1 + Exp[t*x] + t - Exp[t]* x));
a = Table[ CoefficientList[FullSimplify[ExpandAll[(FullSimplify[ExpandAll[ -(1/((-1 + Exp[x])*(-1 + x)))*x^(n + 1)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]] - n!)/(x^2*(-1 + x))]], x], {n, 0, 10}] Flatten[a]
Comments