A067209
Number of n X n 0..1 matrices with all row and column sums equal.
Original entry on oeis.org
1, 2, 4, 14, 140, 4322, 434542, 144109562, 165431317452, 654143160457922, 9331115832294448754, 469229841129645179004962, 87481268294773501231007850158, 58328998963405322376273800187396962, 147013017541698957281403494604070439260442
Offset: 0
Some solutions for n=5
..1..1..0..0..1....0..0..1..0..1....0..1..0..1..1....1..1..0..1..0
..1..1..0..0..1....1..1..0..0..0....1..1..0..0..1....1..0..1..1..0
..0..0..1..1..1....1..0..0..1..0....1..1..1..0..0....1..0..1..0..1
..1..0..1..1..0....0..1..1..0..0....0..0..1..1..1....0..1..0..1..1
..0..1..1..1..0....0..0..0..1..1....1..0..1..1..0....0..1..1..0..1
a(0)=1 prepended and more terms (using data provided by B. D. McKay) from
Alois P. Heinz, Apr 12 2017
A058527
Number of 2n X 2n 0-1 matrices with n ones in each row and each column.
Original entry on oeis.org
1, 2, 90, 297200, 116963796250, 6736218287430460752, 64051375889927380035549804336, 108738182111446498614705217754614976371200, 34812290428176298285394893936773707951192224124239796250, 2188263032066768922535710968724036448759525154977348944382853301460850000
Offset: 0
- Vladeta Jovovic, Nov 12 2006, Table of n, a(n) for n = 0..15
- A Conflitti, C. M. Da Fonseca, and R. Mamede, The maximal length of a chain in the Bruhat order for a chain of binary matrices., Lin. Algebra Applic. (2011)
- Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the largest size of an antichain in the Bruhat order for A(2k, k).
- Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, DOI: 10.1007/s11083-011-9241-1.
- Jonathan Jedwab and Tabriz Popatia, A new representation of mutually orthogonal frequency squares, Simon Fraser University (Burnaby, BC, Canada, 2020).
- M. A. Khojastepour and M. Farajzadeh-Tehrani, Characterizing per Node Degrees of Freedom in an Interference Network, 2014; also 2014 IEEE International Symposium on Information Theory, pp. 1016-1020.
- B. D. McKay, 0-1 matrices with constant row and column sums
- Michael Penn, A not so magic square..., YouTube video, 2021.
- Wikipedia, Dynamic programming
More terms (using dynamic programming in Python) from
Greg Kuperberg, Feb 08 2001
A075754
Number of n X n (0,1) matrices containing exactly five 1's in each row and in each column.
Original entry on oeis.org
1, 720, 3110940, 24046189440, 315031400802720, 6736218287430460752, 226885231700215713535680, 11649337108041078980732943360, 885282776210120715086715619724160, 96986285294151066094112970262797953280
Offset: 5
Michel Buffet (buffet(AT)engref.fr), Oct 08 2002
- B. D. McKay, Applications of a technique for labeled enumeration, Congressus Numerantium, 40 (1983) 207-221.
- Vaclav Kotesovec, Table of n, a(n) for n = 5..61, (computed with program by Doron Zeilberger, see link below)
- B. D. McKay, 0-1 matrices with constant row and column sums
- E. R. Canfield and B. D. McKay, Asymptotic enumeration of dense 0-1 matrices with equal row and column sums.
- Shalosh B. Ekhad and Doron Zeilberger, In How Many Ways Can n (Straight) Men and n (Straight) Women Get Married, if Each Person Has Exactly k Spouses, Maple package Bipartite.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to binary matrices
A283500
Triangle read by rows: T(n,k) = number of n X n (0,1) matrices with at most k 1's in each row or column.
Original entry on oeis.org
2, 7, 16, 34, 265, 512, 209, 7343, 41503, 65536, 1546, 304186, 6474726, 24997921, 33554432, 13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736, 130922, 1336221251, 702998475376, 34215495252681, 252540841305558, 505874809287625
Offset: 1
Triangle begins:
2;
7, 16;
34, 265, 512;
209, 7343, 41503, 65536;
1546, 304186, 6474726, 24997921, 33554432;
13327, 17525812, 1709852332, 21252557377, 57366997447, 68719476736;
...
A172541
Number of n X n 0..1 arrays with row sums 7 and column sums 7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 40320, 14398171200, 8302816499443200, 7722015017013984456000, 11649337108041078980732943360, 28278447454165011203551734584421120, 108738182111446498614705217754614976371200
Offset: 1
A172544
Number of n X n 0..1 arrays with row sums 6 and column sums 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 5040, 187530840, 12025780892160, 1289144584143523800, 226885231700215713535680, 64051375889927380035549804336, 28278447454165011203551734584421120
Offset: 1
A172534
Number of n X n 0..1 arrays with row sums 12 and column sums 12.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6227020800, 676508133623135814000, 65662040698002721810659005184000, 6892692735539278753058456514221737762215000
Offset: 1
A172535
Number of n X n 0..1 arrays with row sums 11 and column sums 11.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 479001600, 3574340599104475200, 27537152449960680597739468800, 254143667822686635850590661555095468000, 3183529624645847695375078143769686741065620316160
Offset: 1
A172536
Number of n X n 0..1 arrays with row sums 8 and column sums 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 362880, 1371785398200, 7673688777463632000, 65599839591251908982712750, 885282776210120715086715619724160, 19040419266278799766631032461849139013040
Offset: 1
A172537
Number of n X n 0..1 arrays with row sums 14 and column sums 14.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1307674368000, 36574751938491748341360000, 665825560532772251175492202972938240000, 10431401634793817906193873163767479249710797568200000
Offset: 1
Comments