A342863
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1243. 0 <= k <= A028723(n + 1).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 56, 32, 14, 7, 9, 0, 0, 1, 2761, 638, 543, 341, 235, 138, 173, 51, 42, 47, 34, 6, 17, 4, 0, 7, 1, 0, 2, 15767, 4478, 4600, 3119, 2658, 1710, 2180, 972, 975, 877, 771, 356, 542, 233, 184, 266, 157, 81, 130, 41, 60, 49, 16, 16, 37, 8, 9, 13, 3, 0, 10, 1, 0, 0, 0, 0, 1
Offset: 0
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 11, 4, 2;
6 | 513, 88, 56, 32, 14, 7, 9, ...
7 | 2761, 638, 543, 341, 235, 138, 173, ...
8 | 15767, 4478, 4600, 3119, 2658, 1710, 2180, ...
9 | 94359, 31199, 36691, 26602, 25756, 17628, 22984, ...
10 | 586590, 218033, 284370, 218957, 231390, 166338, 221429, ...
11 | 3763290, 1535207, 2174352, 1767837, 1994176, 1496134, 2028316, ...
A342864
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1432. 0 <= k <= A100354(n).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 103, 11, 5, 0, 1, 513, 87, 68, 17, 18, 10, 0, 4, 2, 0, 1, 2761, 625, 626, 268, 274, 138, 112, 58, 51, 44, 31, 9, 15, 8, 12, 0, 5, 0, 0, 0, 3, 15767, 4378, 5038, 2781, 3060, 1697, 1817, 1036, 964, 773, 656, 450, 379, 320, 285, 148, 237, 97, 98, 55, 68, 61, 23, 30, 30, 13, 30, 0, 0, 0, 16, 0, 10, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 11, 5, 0, 1;
6 | 513, 87, 68, 17, 18, 10, 0, ...
7 | 2761, 625, 626, 268, 274, 138, 112, ...
8 | 15767, 4378, 5038, 2781, 3060, 1697, 1817, ...
9 | 94359, 30671, 38541, 24731, 28881, 17943, 21193, ...
10 | 586590, 216883, 289785, 205853, 251051, 170941, 211942, ...
11 | 3763290, 1552588, 2172387, 1663964, 2096207, 1535129, 1954751, ...
A342865
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 12, 4, 0, 0, 1;
6 | 513, 102, 63, 10, 6, 12, 8, ...
7 | 2761, 770, 665, 196, 146, 116, 142, ...
8 | 15767, 5545, 5982, 2477, 2148, 1204, 1782, ...
9 | 94359, 39220, 49748, 25886, 25190, 13188, 19936, ...
10 | 586590, 276144, 396642, 244233, 260505, 142550, 210663, ...
11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
A381529
T(n,k) is the number of permutations of [n] having exactly k pairs of integers i=0, 0<=k<=A125811(n)-1, read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 15, 5, 4, 54, 21, 24, 16, 5, 235, 89, 118, 112, 101, 35, 28, 2, 1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14, 7790, 2106, 3023, 3529, 4410, 4463, 4600, 3012, 2789, 1933, 1438, 629, 442, 122, 34, 57581, 12529, 17693, 20980, 27208, 30064, 35359, 33332, 28137, 24970, 22850, 17148, 14272, 8645, 5639, 3684, 1809, 664, 282, 34
Offset: 0
T(4,0) = 15: (1)(2)(3)(4), (1,2)(3)(4), (1)(2,3)(4), (1)(2)(3,4), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4), (1)(2,3,4), (1)(2,4,3), (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2).
T(4,1) = 5: (1)(2,4)(3), (1,2,4)(3), (1,4,2)(3), (1,3)(2)(4), (1,3)(2,4).
T(4,2) = 4: (1,4)(2)(3), (1,4)(2,3), (1,3,4)(2), (1,4,3)(2).
Triangle T(n,k) begins:
1;
1;
2;
5, 1;
15, 5, 4;
54, 21, 24, 16, 5;
235, 89, 118, 112, 101, 35, 28, 2;
1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14;
...
Last elements of rows give
A381531.
-
b:= proc(o, u, t) option remember; expand(`if`(u+o=0, max(0, t-1)!,
`if`(t>0, b(u+o, 0$2)*(t-1)!, 0)+add(x^(u+j-1)*
b(o-j, u+j-1, t+1), j=`if`(t=0, 1, 1..o))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..10);
A005283
Number of permutations of (1,...,n) having n-5 inversions (n>=5).
Original entry on oeis.org
1, 5, 20, 76, 285, 1068, 4015, 15159, 57486, 218895, 836604, 3208036, 12337630, 47572239, 183856635, 712033264, 2762629983, 10736569602, 41788665040, 162869776650, 635562468075, 2482933033659, 9710010151831, 38008957336974, 148912655255315, 583885852950802
Offset: 5
a(6)=5 because we have 213456, 132456, 124356, 123546, and 123465.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
- R. K. Guy, personal communication.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
-
f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-5), n=5..40); # Barbara Haas Margolius, May 31 2001
-
Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-5}],{n,5,25}] (* Vaclav Kotesovec, Mar 16 2014 *)
More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
A005284
Number of permutations of (1,...,n) having n-6 inversions (n>=6).
Original entry on oeis.org
1, 6, 27, 111, 440, 1717, 6655, 25728, 99412, 384320, 1487262, 5762643, 22357907, 86859412, 337879565, 1315952428, 5131231668, 20029728894, 78265410550, 306109412100, 1198306570554, 4694809541046, 18407850118383
Offset: 6
a(7)=6 because we have 2134567, 1324567, 1243567, 1235467, 1234657 and 1234576.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
- R. K. Guy, personal communication.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
-
g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+6,j),j=0..30); # Barbara Haas Margolius, May 31 2001
-
Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-6}],{n,6,25}] (* Vaclav Kotesovec, Mar 16 2014 *)
More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
A005285
Number of permutations of (1,...,n) having n-7 inversions (n>=7).
Original entry on oeis.org
1, 7, 35, 155, 649, 2640, 10569, 41926, 165425, 650658, 2554607, 10020277, 39287173, 154022930, 603919164, 2368601685, 9293159292, 36476745510, 143239635450, 562744102479, 2211876507387, 8697839966552, 34218338900591
Offset: 7
a(8)=7 because we have 21345678, 13245678, 12435678, 12354678, 12346578, 12345768, and 12345687.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
- R. K. Guy, personal communication.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 7..1000
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
-
g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+7,j),j=0..30); # Barbara Haas Margolius, May 31 2001
-
Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-7}],{n,7,25}] (* Vaclav Kotesovec, Mar 16 2014 *)
More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
A336499
Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0
Triangle begins:
1
1
1 1
1 2 0
1 2 1 2 1
1 3 1 3 2 0
1 3 2 5 3 3 2 1
1 4 2 7 4 4 3 2 0
1 4 2 7 4 5 7 7 6 3 2 0
1 4 2 8 8 9 10 11 11 7 8 5 2 0
1 4 3 11 8 11 16 16 15 15 15 13 9 6 3 1
1 5 3 14 10 13 21 21 20 19 21 18 13 9 5 2 0
1 5 3 14 10 14 25 23 27 24 30 28 28 25 20 16 11 5 2 0
Row n = 7 counts the following divisors:
1 2 4 8 16 48 144 720 {}
3 9 12 24 72 360 1008
5 18 40 80 504
7 20 56 112
28
45
63
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.
-
Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]
A005288
a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.
Original entry on oeis.org
3, 22, 71, 169, 343, 628, 1068, 1717, 2640, 3914, 5629, 7889, 10813, 14536, 19210, 25005, 32110, 40734, 51107, 63481, 78131, 95356, 115480, 138853, 165852, 196882, 232377, 272801, 318649, 370448, 428758, 494173, 567322
Offset: 6
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241-242. (Annotated scanned copy)
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
Join[{3},Table[Binomial[n,5]+Binomial[n,4]-Binomial[n,3]+1,{n,7,50}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,22,71,169,343,628,1068},50] (* Harvey P. Dale, Aug 30 2021 *)
A336865
Irregular triangle read by rows where T(n,k) is the number of divisors of n with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0
Offset: 1
The triangle begins as follows. The n-th row is shown to the right of "n:".
1: (1) 16: (1,1,1,1,1) 31: (1,1)
2: (1,1) 17: (1,1) 32: (1,1,1,1,1,1)
3: (1,1) 18: (1,2,1,1) 33: (1,2,0)
4: (1,1,1) 19: (1,1) 34: (1,2,0)
5: (1,1) 20: (1,2,1,1) 35: (1,2,0)
6: (1,2,0) 21: (1,2,0) 36: (1,2,2,2,0)
7: (1,1) 22: (1,2,0) 37: (1,1)
8: (1,1,1,1) 23: (1,1) 38: (1,2,0)
9: (1,1,1) 24: (1,2,1,2,1) 39: (1,2,0)
10: (1,2,0) 25: (1,1,1) 40: (1,2,1,2,1)
11: (1,1) 26: (1,2,0) 41: (1,1)
12: (1,2,1,1) 27: (1,1,1,1) 42: (1,3,0,0)
13: (1,1) 28: (1,2,1,1) 43: (1,1)
14: (1,2,0) 29: (1,1) 44: (1,2,1,1)
15: (1,2,0) 30: (1,3,0,0) 45: (1,2,1,1)
Row n = 72 counts the following divisors:
1 2 4 8 24 72
3 9 12
18
Row n = 1200 counts the following divisors:
1 2 4 8 16 48 400 1200
3 25 12 24 80 600
5 20 40 200
50
75
A130092 gives positions of rows ending with 0.
A146291 is the version not requiring distinct prime multiplicities.
A336499 is the restriction to factorial numbers.
A001222 counts prime factors, counting multiplicity.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
-
Table[Length[Select[Divisors[n],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,20},{k,0,PrimeOmega[n]}]
Comments