cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 122 results. Next

A342863 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1243. 0 <= k <= A028723(n + 1).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 56, 32, 14, 7, 9, 0, 0, 1, 2761, 638, 543, 341, 235, 138, 173, 51, 42, 47, 34, 6, 17, 4, 0, 7, 1, 0, 2, 15767, 4478, 4600, 3119, 2658, 1710, 2180, 972, 975, 877, 771, 356, 542, 233, 184, 266, 157, 81, 130, 41, 60, 49, 16, 16, 37, 8, 9, 13, 3, 0, 10, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2134, 3421, and 4312.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       4,       2;
   6 |     513,      88,      56,      32,      14,       7,       9, ...
   7 |    2761,     638,     543,     341,     235,     138,     173, ...
   8 |   15767,    4478,    4600,    3119,    2658,    1710,    2180, ...
   9 |   94359,   31199,   36691,   26602,   25756,   17628,   22984, ...
  10 |  586590,  218033,  284370,  218957,  231390,  166338,  221429, ...
  11 | 3763290, 1535207, 2174352, 1767837, 1994176, 1496134, 2028316, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342864 (1432), A342865 (1234).

A342864 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1432. 0 <= k <= A100354(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 5, 0, 1, 513, 87, 68, 17, 18, 10, 0, 4, 2, 0, 1, 2761, 625, 626, 268, 274, 138, 112, 58, 51, 44, 31, 9, 15, 8, 12, 0, 5, 0, 0, 0, 3, 15767, 4378, 5038, 2781, 3060, 1697, 1817, 1036, 964, 773, 656, 450, 379, 320, 285, 148, 237, 97, 98, 55, 68, 61, 23, 30, 30, 13, 30, 0, 0, 0, 16, 0, 10, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2341, 3214, and 4123.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       5,       0,       1;
   6 |     513,      87,      68,      17,      18,      10,       0, ...
   7 |    2761,     625,     626,     268,     274,     138,     112, ...
   8 |   15767,    4378,    5038,    2781,    3060,    1697,    1817, ...
   9 |   94359,   30671,   38541,   24731,   28881,   17943,   21193, ...
  10 |  586590,  216883,  289785,  205853,  251051,  170941,  211942, ...
  11 | 3763290, 1552588, 2172387, 1663964, 2096207, 1535129, 1954751, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342865 (1234).

A342865 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 4321.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      12,       4,       0,       0,       1;
   6 |     513,     102,      63,      10,       6,      12,       8, ...
   7 |    2761,     770,     665,     196,     146,     116,     142, ...
   8 |   15767,    5545,    5982,    2477,    2148,    1204,    1782, ...
   9 |   94359,   39220,   49748,   25886,   25190,   13188,   19936, ...
  10 |  586590,  276144,  396642,  244233,  260505,  142550,  210663, ...
  11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432).

A381529 T(n,k) is the number of permutations of [n] having exactly k pairs of integers i=0, 0<=k<=A125811(n)-1, read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 15, 5, 4, 54, 21, 24, 16, 5, 235, 89, 118, 112, 101, 35, 28, 2, 1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14, 7790, 2106, 3023, 3529, 4410, 4463, 4600, 3012, 2789, 1933, 1438, 629, 442, 122, 34, 57581, 12529, 17693, 20980, 27208, 30064, 35359, 33332, 28137, 24970, 22850, 17148, 14272, 8645, 5639, 3684, 1809, 664, 282, 34
Offset: 0

Views

Author

Alois P. Heinz, Feb 26 2025

Keywords

Examples

			T(4,0) = 15: (1)(2)(3)(4), (1,2)(3)(4), (1)(2,3)(4), (1)(2)(3,4), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4), (1)(2,3,4), (1)(2,4,3), (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2).
T(4,1) = 5: (1)(2,4)(3), (1,2,4)(3), (1,4,2)(3), (1,3)(2)(4), (1,3)(2,4).
T(4,2) = 4: (1,4)(2)(3), (1,4)(2,3), (1,3,4)(2), (1,4,3)(2).
Triangle T(n,k) begins:
     1;
     1;
     2;
     5,   1;
    15,   5,   4;
    54,  21,  24,  16,   5;
   235,  89, 118, 112, 101,  35,  28,   2;
  1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14;
  ...
		

Crossrefs

Columns k=0-1 give: A051295, A381539.
Row sums give A000142.
Row lengths give A125811.
Last elements of rows give A381531.
Main diagonal gives A381545.
Cf. A008302, A125810 (similar for set partitions), A126673, A381299 (similar for ordered set partitions).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, max(0, t-1)!,
         `if`(t>0, b(u+o, 0$2)*(t-1)!, 0)+add(x^(u+j-1)*
            b(o-j, u+j-1, t+1), j=`if`(t=0, 1, 1..o))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);

Formula

Sum_{k>=1} k * T(n,k) = A126673(n)/2.

A005283 Number of permutations of (1,...,n) having n-5 inversions (n>=5).

Original entry on oeis.org

1, 5, 20, 76, 285, 1068, 4015, 15159, 57486, 218895, 836604, 3208036, 12337630, 47572239, 183856635, 712033264, 2762629983, 10736569602, 41788665040, 162869776650, 635562468075, 2482933033659, 9710010151831, 38008957336974, 148912655255315, 583885852950802
Offset: 5

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(6)=5 because we have 213456, 132456, 124356, 123546, and 123465.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-5), n=5..40); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-5}],{n,5,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-6)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A005284 Number of permutations of (1,...,n) having n-6 inversions (n>=6).

Original entry on oeis.org

1, 6, 27, 111, 440, 1717, 6655, 25728, 99412, 384320, 1487262, 5762643, 22357907, 86859412, 337879565, 1315952428, 5131231668, 20029728894, 78265410550, 306109412100, 1198306570554, 4694809541046, 18407850118383
Offset: 6

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(7)=6 because we have 2134567, 1324567, 1243567, 1235467, 1234657 and 1234576.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+6,j),j=0..30); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-6}],{n,6,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-7)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A005285 Number of permutations of (1,...,n) having n-7 inversions (n>=7).

Original entry on oeis.org

1, 7, 35, 155, 649, 2640, 10569, 41926, 165425, 650658, 2554607, 10020277, 39287173, 154022930, 603919164, 2368601685, 9293159292, 36476745510, 143239635450, 562744102479, 2211876507387, 8697839966552, 34218338900591
Offset: 7

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(8)=7 because we have 21345678, 13245678, 12435678, 12354678, 12346578, 12345768, and 12345687.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+7,j),j=0..30); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-7}],{n,7,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-8)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  0
  1  2  1  2  1
  1  3  1  3  2  0
  1  3  2  5  3  3  2  1
  1  4  2  7  4  4  3  2  0
  1  4  2  7  4  5  7  7  6  3  2  0
  1  4  2  8  8  9 10 11 11  7  8  5  2  0
  1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
  1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
  1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
Row n = 7 counts the following divisors:
  1  2  4  8   16  48   144  720   {}
     3  9  12  24  72   360  1008
     5     18  40  80   504
     7     20  56  112
           28
           45
           63
		

Crossrefs

A000720 is column k = 1.
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336414 gives row sums.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]

A005288 a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.

Original entry on oeis.org

3, 22, 71, 169, 343, 628, 1068, 1717, 2640, 3914, 5629, 7889, 10813, 14536, 19210, 25005, 32110, 40734, 51107, 63481, 78131, 95356, 115480, 138853, 165852, 196882, 232377, 272801, 318649, 370448, 428758, 494173, 567322
Offset: 6

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008302.

Programs

  • Mathematica
    Join[{3},Table[Binomial[n,5]+Binomial[n,4]-Binomial[n,3]+1,{n,7,50}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,22,71,169,343,628,1068},50] (* Harvey P. Dale, Aug 30 2021 *)

Formula

a(n) = C(n+3, 5) - C(n+2, 3) + C(n, 0).
G.f.: 3*x^6 -x^7*(x-2)*(2*x^4-11*x^3+24*x^2-25*x+11)/(x-1)^6. Simon Plouffe in his 1992 dissertation
a(n) = (n+4)*(n-3)*(n^3-6*n^2+3*n-10)/120, n >= 7. - R. J. Mathar, May 19 2013

A336865 Irregular triangle read by rows where T(n,k) is the number of divisors of n with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

Row lengths are A073093(n) = A001222(n) + 1.

Examples

			The triangle begins as follows. The n-th row is shown to the right of "n:".
     1: (1)          16: (1,1,1,1,1)    31: (1,1)
     2: (1,1)        17: (1,1)          32: (1,1,1,1,1,1)
     3: (1,1)        18: (1,2,1,1)      33: (1,2,0)
     4: (1,1,1)      19: (1,1)          34: (1,2,0)
     5: (1,1)        20: (1,2,1,1)      35: (1,2,0)
     6: (1,2,0)      21: (1,2,0)        36: (1,2,2,2,0)
     7: (1,1)        22: (1,2,0)        37: (1,1)
     8: (1,1,1,1)    23: (1,1)          38: (1,2,0)
     9: (1,1,1)      24: (1,2,1,2,1)    39: (1,2,0)
    10: (1,2,0)      25: (1,1,1)        40: (1,2,1,2,1)
    11: (1,1)        26: (1,2,0)        41: (1,1)
    12: (1,2,1,1)    27: (1,1,1,1)      42: (1,3,0,0)
    13: (1,1)        28: (1,2,1,1)      43: (1,1)
    14: (1,2,0)      29: (1,1)          44: (1,2,1,1)
    15: (1,2,0)      30: (1,3,0,0)      45: (1,2,1,1)
Row n = 72 counts the following divisors:
  1  2  4   8  24  72
     3  9  12
           18
Row n = 1200 counts the following divisors:
  1  2   4   8  16   48  400  1200
     3  25  12  24   80  600
     5      20  40  200
            50
            75
		

Crossrefs

A073093 gives row lengths.
A130092 gives positions of rows ending with 0.
A146291 is the version not requiring distinct prime multiplicities.
A181796 gives row sums.
A336499 is the restriction to factorial numbers.
A001222 counts prime factors, counting multiplicity.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
A336423 counts chains using A130091.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,20},{k,0,PrimeOmega[n]}]
Previous Showing 31-40 of 122 results. Next