cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A380500 Table T(n,k) = phi(phi(prime(n)^k)), n >= 1, k >= 0, read by upwards antidiagonals, where phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 8, 6, 4, 1, 4, 12, 40, 18, 8, 1, 4, 40, 84, 200, 54, 16, 1, 8, 48, 440, 588, 1000, 162, 32, 1, 6, 128, 624, 4840, 4116, 5000, 486, 64, 1, 10, 108, 2176, 8112, 53240, 28812, 25000, 1458, 128, 1, 12, 220, 2052, 36992, 105456, 585640, 201684, 125000, 4374, 256
Offset: 1

Views

Author

Michael De Vlieger, Feb 04 2025

Keywords

Comments

For n >= 2, k >= 1, T(n,k) is the number of primitive roots of prime(n)^k.

Examples

			Table begins as follows:
n\k  0   1     2      3       4        5          6           7
---------------------------------------------------------------
1:   1   1     1      2       4        8         16          32
2:   1   1     2      6      18       54        162         486
3:   1   2     8     40     200     1000       5000       25000
4:   1   2    12     84     588     4116      28812      201684
5:   1   4    40    440    4840    53240     585640     6442040
6:   1   4    48    624    8112   105456    1370928    17822064
7:   1   8   128   2176   36992   628864   10690688   181741696
		

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[EulerPhi[Prime[#]^k]] &[n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

T(n,k) = A010554(prime(n)^k) = A046144(prime(n)^k).
T(n,0) = 1.
T(n,1) = phi(prime(n)-1) = A008330(n).
T(n,2) = (prime(n)-1) * phi(prime(n)-1)
= (prime(n)-1)^2 * Product_{q|(prime(n)-1)} 1-1/q, prime q.
= A104039(n).
For k > 1, T(n,k) = prime(n)^(k-2) * A104039(n).
T(n,2) > prime(n) for n > 2.
T(n,k) < prime(n)^k for all n and for k > 0.

A067733 Numbers k such that phi(prime(k)-1) == 0 (mod k).

Original entry on oeis.org

1, 12, 540, 1024, 1072, 1092, 1320, 1408, 4272, 16200, 29568, 40082, 43740, 56592, 123192, 251736, 265440, 276000, 664320, 725760, 758560, 771264, 2101248, 3195192, 6592704, 7243050, 7464960, 8755680, 10553502, 11715840, 14135296, 19952730, 20058720, 21672288
Offset: 1

Views

Author

Benoit Cloitre, Feb 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[42000], Mod[EulerPhi[Prime[ # ] - 1], # ] == 0 &]
  • PARI
    for(k=1,2600000, if(eulerphi(prime(k)-1)%k==0,print1(k,",")))

Extensions

More terms from Klaus Brockhaus, Feb 13 2002
More terms from Jinyuan Wang, Apr 05 2020

A306371 Number of primitive roots of prime A103521(n).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 120, 144, 160, 176, 200, 216, 240, 288, 320, 336, 384, 432, 448, 480, 576, 720, 768, 880, 960, 1056, 1200, 1280, 1344, 1440, 1664, 1680, 1728, 1920, 2112, 2208, 2304, 2400, 2592, 2784, 2880, 3072, 3456, 3840, 4224, 4320
Offset: 1

Views

Author

Jianing Song, Feb 11 2019

Keywords

Comments

Numbers k in A008330 such that no numbers <= k occur later than k in A008330.
Different from A036912 since a(19) = 144 and A036912(19) = 128.

Crossrefs

Cf. A103521.
Cf. also A103203, A121519.

Programs

  • PARI
    b(n) = if(n==1, 2, floor(exp(Euler)*n*log(log(n^2))+2.5*n/log(log(n^2))));
    f(p) = my(i=0); forprime(q=p+1, b(eulerphi(p-1))+1, i+=(eulerphi(q-1)<=eulerphi(p-1))); i;
    forprime(p=2, 2e4, if(f(p)==0, print1(eulerphi(p-1), ", ")))

Formula

a(n) = phi(A103521(n)-1).

A317706 Irregular triangle of numbers k < p^2 such that k is a primitive root modulo p but not p^2, p = prime(n).

Original entry on oeis.org

1, 8, 7, 18, 19, 31, 40, 94, 112, 118, 19, 80, 89, 150, 40, 65, 75, 131, 158, 214, 224, 249, 116, 127, 262, 299, 307, 333, 28, 42, 63, 130, 195, 263, 274, 352, 359, 411, 14, 60, 137, 221, 374, 416, 425, 467, 620, 704, 781, 827, 115, 117, 145, 229, 414, 513, 623, 726
Offset: 1

Views

Author

Jianing Song, Aug 05 2018

Keywords

Comments

Also row n lists numbers k < p^2 such that the multiplicative order of k modulo p^2 is p - 1.
Row n has phi(prime(n) - 1) = A008330(n) terms.
Row sum is congruent to mu(prime(n) - 1) = A089451(n) modulo prime(n)^2, where mu is the Moebius function. For n >= 3, the product of n-th row is congruent to 1 modulo prime(n)^2.
Does every integer appear in this sequence? For example, 3 does not appear until the prime 1006003 and 5 does not appear until the prime 40487. Where does 2 first appear?

Examples

			(2)   1,
(3)   8,
(5)   7, 18,
(7)   19, 31,
(11)  40, 94, 112, 118,
(13)  19, 80, 89, 150,
(17)  40, 65, 75, 131, 158, 214, 224, 249,
(19)  116, 127, 262, 299, 307, 333,
(23)  28, 42, 63, 130, 195, 263, 274, 352, 359, 411,
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range[p^2 - 1], MultiplicativeOrder[#, p^2] == p - 1 &], {p, Prime@ Range@ 11}] // Flatten (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    forprime(p=2,100,for(i=1,p^2,if(Mod(i,p)!=0,if(znorder(Mod(i,p^2))==p-1,print1(i, ", ")))))
Previous Showing 41-44 of 44 results.