cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A290049 Coefficients in expansion of 691*E_8*E_10*E_12.

Original entry on oeis.org

691, 214776, 10042488, -31595258016, -37453557900168, -14820419119618224, -2593285239712936608, -222297419357081232192, -10663770067272328258440, -324599563661107722245352, -6891830216922929182318512, -109326152051786546417315808
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2017

Keywords

Crossrefs

Cf. A008410 (E_8), A013974 (E_10), A029828 (691*E_12).

Programs

  • Mathematica
    terms = 12;
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
    691*E8[x]*E10[x]*E12[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

A299955 Coefficients in expansion of E_4^(3/2).

Original entry on oeis.org

1, 360, 24840, -465120, 57417480, -6800282640, 930889890720, -139401582644160, 22250341370421000, -3723955494287559480, 646515765251485521840, -115559140273640812421280, 21150946022800731753255840, -3948247836773858791840263120
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2018

Keywords

Crossrefs

E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7), A004009 (k=8), this sequence (k=12), A008410 (k=16), A008411 (k=24), A282012 (k=32), A282015 (k=40).

Formula

Convolution cube of A289292.
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(5/2), where c = 81*Gamma(1/3)^27 / (32768*sqrt(2)*Pi^(37/2)) = 0.39832876770813443250501819621900549862424768734... - Vaclav Kotesovec, Mar 05 2018

A307760 a(n) = (A288840(5*n) - A288840(n))/3000.

Original entry on oeis.org

0, 29354332817, 1292515672236611166229929, 56911411397043798759062515920346474052, 2505895144465774474827581824222076409739506505294889, 110338336739674093788639219775047689525384763850603917156033805525
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2019

Keywords

Crossrefs

Cf. A008410 (E_8), A013973 (E_6), A288840, A307759.

A105097 Expansion of Delta(tau)/E_4(tau)^2.

Original entry on oeis.org

1, -504, 180252, -56364992, 16415391870, -4574618335008, 1237162549543256, -327377686829760000, 85212608926827807477, -21894492009015306942480, 5567179862617316105012532, -1403483985988949037403977984
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2005

Keywords

Comments

According to Paşol and Zudilin, a(n) is divisible by n. - F. Chapoton, Aug 10 2021

Crossrefs

Programs

  • PARI
    {a(n)=if(n<1,0,polcoeff( x*eta(x+x*O(x^n))^24/sum(k=1,n,480*sigma(k,7)*x^k,1),n))} /* Michael Somos, Apr 07 2005 */

Formula

a(n) ~ -(-1)^n * exp(Pi*sqrt(3)*n) * n / 192. - Vaclav Kotesovec, Jun 07 2018

Extensions

More terms from Michael Somos, Apr 07 2005

A282540 Eisenstein series E_32(q) (alternate convention E_16(q)), multiplied by 7709321041217.

Original entry on oeis.org

7709321041217, 32640, 70093866303360, 20160859654708062720, 150525431711563807489920, 151991844177246093750032640, 43295116458269350559666465280, 5149788469617367127914995164160, 323250903208723929093223124860800
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), A282401 (3392780147*E_28), A282182 (1723168255201*E_30), this sequence (7709321041217*E_32).
Cf. A282474 (E_4^8), A282541 (E_4^5*E_6^2), A282543 (E_4^2*E_6^4).

Programs

  • Mathematica
    terms = 9;
    E32[x_] = 7709321041217 + 32640*Sum[k^31*x^k/(1 - x^k), {k, 1, terms}];
    E32[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 764412173217*A282474(n) + 5323905468000 * A282541(n) + 1621003400000 * A282543(n).
Previous Showing 41-45 of 45 results.