cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A016956 a(n) = (6*n + 3)^12.

Original entry on oeis.org

531441, 282429536481, 129746337890625, 7355827511386641, 150094635296999121, 1667889514952984961, 12381557655576425121, 68952523554931640625, 309629344375621415601, 1176246293903439668001, 3909188328478827879681, 11646329922777311412561, 31676352024078369140625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016945(n)^12 = A016946(n)^6 = A016947(n)^4 = A016948(n)^3 = A016950(n)^2..
a(n) = 3^12*A016764(n).
Sum_{n>=0} 1/a(n) = 691*Pi^12/339414785740800. (End)

A016968 a(n) = (6*n + 4)^12.

Original entry on oeis.org

16777216, 1000000000000, 281474976710656, 12855002631049216, 232218265089212416, 2386420683693101056, 16777216000000000000, 89762301673555234816, 390877006486250192896, 1449225352009601191936, 4722366482869645213696, 13841287201000000000000, 37133262473195501387776
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^12 = A016958(n)^6 = A016959(n)^4 = A016960(n)^3 = A016962(n)^2.
a(n) = 2^12*A016800(n).
Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/86890185149644800. (End)

A016980 a(n) = (6*n + 5)^12.

Original entry on oeis.org

244140625, 3138428376721, 582622237229761, 21914624432020321, 353814783205469041, 3379220508056640625, 22563490300366186081, 116191483108948578241, 491258904256726154641, 1779197418239532716881, 5688009063105712890625, 16409682740640811134241, 43439888521963583647921
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A008456 (n^12).

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^12 = A016970(n)^6 = A016971(n)^4 = A016972(n)^3 = A016974(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(11, 5/6)/86890185149644800. (End)

A017220 a(n) = (9*n + 4)^12.

Original entry on oeis.org

16777216, 23298085122481, 12855002631049216, 787662783788549761, 16777216000000000000, 191581231380566414401, 1449225352009601191936, 8182718904632857144561, 37133262473195501387776, 142241757136172119140625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008456 (n^12), A017209 (9*n+4).

Programs

A017352 (10*n+6)^12.

Original entry on oeis.org

2176782336, 281474976710656, 95428956661682176, 4738381338321616896, 89762301673555234816, 951166013805414055936, 6831675453247426400256, 37133262473195501387776, 163674647745587512938496, 612709757329767363772416
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008456 (12th Powers), A017341 (10n+6).

Programs

  • Magma
    [(10*n+6)^12: n in [0..10]]; // Vincenzo Librandi, Aug 03 2011
  • Maple
    A017352:=n->(10*n+6)^12: seq(A017352(n), n=0..10); # Wesley Ivan Hurt, Oct 28 2014
  • Mathematica
    (10 Range[0, 10] + 6)^12 (* Wesley Ivan Hurt, Oct 28 2014 *)
    CoefficientList[Series[4096 (531441 + 68712568003 x + 22404773377311 x^2 + 859316242027205 x^3 + 8673413722667370 x^4 + 30946876621062078 x^5 + 44108689210889694 x^6 + 25884027384156618 x^7 + 5972410776815445 x^8 + 467792550632655 x^9 + 8736164034131 x^10 + 13841233953 x^11 + 4096 x^12)/(1 - x)^13, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)

Formula

From Wesley Ivan Hurt, Oct 28 2014: (Start)
G.f.: 4096*(531441 + 68712568003*x + 22404773377311*x^2 + 859316242027205*x^3 + 8673413722667370*x^4 + 30946876621062078*x^5 + 44108689210889694*x^6 + 25884027384156618*x^7 + 5972410776815445*x^8 + 467792550632655*x^9 + 8736164034131*x^10 + 13841233953*x^11 + 4096*x^12) / (1-x)^13.
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13).
a(n) = (10*n+6)^12 = A008456(A017341(n)). (End)

A024113 a(n) = 9^n-n^12.

Original entry on oeis.org

1, 8, -4015, -530712, -16770655, -244081576, -2176250895, -13836504232, -68676430015, -282042115992, -996513215599, -3107047317112, -8633670911775, -20756219294152, -33817119920335, 76144794204024, 1571545212141185, 16094559462436808, 148937803915572945
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Crossrefs

Programs

Formula

a(n) = A001019(n) - A008456(n). - Wesley Ivan Hurt, May 25 2014
G.f.: (8*x^13 +36759*x^12 +4300278*x^11 +91211180*x^10 +586677866*x^9 +1396293387*x^8 +1300096572*x^7 +434355696*x^6 +25369404*x^5 -5882531*x^4 -441810*x^3 -3996*x^2 -14*x +1) / ((x -1)^13*(9*x -1)). - Colin Barker, May 26 2014

A340048 Numbers that are the sum of a cube s and a fourth power t such that 0 < s <= t.

Original entry on oeis.org

2, 17, 24, 82, 89, 108, 145, 257, 264, 283, 320, 381, 472, 626, 633, 652, 689, 750, 841, 968, 1137, 1297, 1304, 1323, 1360, 1421, 1512, 1639, 1808, 2025, 2296, 2402, 2409, 2428, 2465, 2526, 2617, 2744, 2913, 3130, 3401, 3732, 4097, 4104, 4123, 4129, 4160, 4221, 4312
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 26 2020

Keywords

Comments

Contains the entries of A340050 and numbers like 2, 8192, 1062882,.. which are 2 times 12th powers (A008456). - R. J. Mathar, Jan 05 2021

Examples

			24 is in the sequence since 2^3 + 2^4 = 8 + 16 = 24, where 0 < 8 <= 16.
		

Crossrefs

Programs

  • Maple
    isA340048 := proc(n)
        local t,s3 ;
        for t from 0 do
            s3 := n-t^4 ;
            if s3 <= 0 then
                return false ;
            elif s3 <= t^4 and isA000578(s3) then
                return true;
            end if;
        end do:
    end proc:
    for n from 1 do
        if isA340048(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Jan 05 2021
  • Mathematica
    Table[If[Sum[(Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/4)] - Floor[(n - i - 1)^(1/4)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1000}] // Flatten
  • Python
    def aupto(lim):
      cubes = [i**3 for i in range(1, int(lim**(1/3))+2)]
      fours = [i**4 for i in range(1, int(lim**(1/4))+2)]
      return sorted(s+t for s in cubes for t in fours if t >= s and s+t <= lim)
    print(aupto(4312)) # Michael S. Branicky, Feb 17 2021
Previous Showing 21-27 of 27 results.