cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 416 results. Next

A064111 Numbers k such that sopf(k) + 1 = sopf(k+1), where sopf(k) = A008472(k).

Original entry on oeis.org

2, 8, 120, 168, 175, 247, 860, 1044, 1444, 1659, 1849, 3626, 3834, 4233, 4300, 4345, 4814, 6867, 8240, 14905, 23287, 24476, 28919, 29087, 29464, 30457, 30650, 33725, 34945, 35585, 37214, 49468, 52206, 54900, 58113, 62049, 63440, 65631, 68264
Offset: 1

Views

Author

Jason Earls, Sep 08 2001

Keywords

Comments

Also k such that z(k) = z(k+1) where z(k) = k - sopf(k).
Prime factors counted without multiplicity. - Harvey P. Dale, Dec 26 2015

Examples

			sopf(8) + 1 = 3, sopf(8 + 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[Total[Transpose[FactorInteger[n]] [[1]]], {n, 2,70000}],2,1],?(#[[1]]+1==#[[2]]&),{1},Heads->False]]+1 (* _Harvey P. Dale, Dec 26 2015 *)
  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)+1==sopf(n+1), j=concat(j,n))); j
    
  • PARI
    z(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(n - s) }
    { n=0; zm=z(1); for (m=1, 10^9, zp=z(m + 1); if (zm==zp, write("b064111.txt", n++, " ", m); if (n==1000, break)); zm=zp ) } \\ Harry J. Smith, Sep 07 2009

A076381 Numbers n such that sum of digits in base 3 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 4, 9, 25, 27, 30, 42, 51, 66, 78, 81, 84, 90, 105, 114, 126, 138, 141, 147, 153, 156, 159, 168, 170, 185, 186, 187, 198, 201, 220, 222, 228, 231, 234, 243, 245, 246, 252, 258, 264, 270, 276, 282, 290, 291, 294, 301, 312, 315, 322, 323, 325, 336, 340, 341
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Crossrefs

Programs

  • Maple
    A076381 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 3); t1 := floor(t1/3); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;
  • Mathematica
    Select[Range[2,400],Divisible[Total[FactorInteger[#][[All,1]]],Total[ IntegerDigits[ #,3]]]&] (* Harvey P. Dale, Jul 09 2018 *)

A081382 a(1) = 1, for n > 1 a(n) = Min{x > n, A008472(x) = A008472(n)}.

Original entry on oeis.org

1, 4, 9, 8, 6, 12, 10, 16, 27, 20, 121, 18, 22, 28, 45, 32, 210, 24, 34, 40, 30, 44, 273, 25, 36, 52, 81, 56, 399, 60, 58, 64, 70, 68, 42, 48, 435, 76, 55, 49, 651, 84, 82, 88, 75, 92, 777, 54, 50, 80, 91, 104, 903, 72, 66, 98, 85, 116, 1645, 63, 118, 124, 90, 128, 77, 117
Offset: 1

Views

Author

Labos Elemer, Mar 26 2003

Keywords

Comments

Differs from A065642, a(n) <= A065642(n).

Crossrefs

Programs

  • Haskell
    a081382 1 = 1
    a081382 n = head [x | let sopf = a008472 n, x <- [n+1..], a008472 x == sopf]
    -- Reinhard Zumkeller, Jun 12 2015
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] spf[x_] := Apply[Plus, ba[x]] Table[Min[Flatten[Position[Table[spf[w], {w, n+1, n^2}]-spf[n], 0]]+n], {n, 1, 100}]

A082880 Largest value of A075860(j) when j runs through composite numbers between n-th and (n+1)-th primes. That is, the largest fixed-point[=prime] reached by iteration of A008472(=sum of prime factors) initiated with composite values between two consecutive primes.

Original entry on oeis.org

0, 2, 5, 7, 5, 3, 5, 13, 5, 7, 19, 7, 5, 13, 7, 31, 7, 7, 19, 5, 7, 43, 13, 19, 7, 13, 2, 5, 7, 61, 7, 19, 3, 73, 7, 7, 7, 43, 13, 19, 7, 13, 5, 7, 2, 103, 109, 3, 5, 31, 61, 7, 13, 19, 13, 31, 7, 139, 19, 2, 73, 151, 7, 5, 3, 43, 13, 31, 19, 13, 181, 19, 13, 7, 193, 23, 199, 29, 103, 73
Offset: 1

Views

Author

Labos Elemer, Apr 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; sopf[x_] := Apply[Plus, ba[x]]; Table[Max[0, Table[FixedPoint[sopf, w], {w, 1+Prime[n], Prime[n+1]-1}]], {n, 80}]

Formula

a(n) = Max_{x=1+prime(n)..prime(n+1)-1} A075860(x).

A340677 a(n) = A007947(n) / gcd(A007947(n), A008472(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 3, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 7, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 3, 1, 62, 21, 1, 65, 33, 1, 34, 69, 5, 1, 6, 1, 74, 15, 38, 77, 13, 1, 10, 1, 82, 1, 7, 85, 86, 87, 22, 1, 3, 91, 46, 93
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Cf. A000961 (positions of ones), A006881, A007947, A008472, A099636, A340678.
Cf. also A082344.

Programs

Formula

a(n) = A007947(n) / A099636(n) = A007947(n) / gcd(A007947(n), A008472(n)).
a(n) = 1 iff n is power of prime (A000961). - Bernard Schott, Feb 01 2021
a(A006881(n)) = A006881(n). - Bernard Schott and Antti Karttunen, Feb 01 2021

A340678 a(n) = A008472(n) / gcd(A007947(n), A008472(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 1, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 2, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 1, 1, 33, 10, 1, 18, 8, 1, 19, 26, 1, 1, 5, 1, 39, 8, 21, 18, 3, 1, 7, 1, 43, 1, 2, 22, 45, 32, 13, 1, 1, 20, 25, 34, 49, 24, 5, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A008472(n) / A099636(n) = A008472(n) / gcd(A007947(n), A008472(n)).

A365059 a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).

Original entry on oeis.org

2, 4, 6, 5, 10, 7, 14, 9, 3, 12, 15, 8, 16, 18, 20, 21, 30, 40, 28, 27, 24, 25, 35, 36, 45, 32, 22, 13, 26, 60, 50, 42, 48, 55, 64, 34, 19, 38, 63, 70, 56, 54, 65, 72, 75, 80, 49, 77, 90, 100, 84, 96, 85, 44, 39, 112, 81, 33, 98, 99, 126, 108, 95, 120, 110, 144, 105, 135, 88, 52, 150, 130, 140
Offset: 1

Views

Author

Scott R. Shannon, Aug 19 2023

Keywords

Comments

In the first 500000 terms the only fixed points are 38 and 209, although it is likely more exist. In the same range the smallest missing numbers are 311, 313, 337. The sequence is conjectured to be a permutation of the integers >= 2.

Examples

			a(3) = 6 as a(2) = 4 and A008472(4) = 2, and 6 is the smallest unused number that is a multiple of 2.
a(11) = 15 as a(10) = 12 and A008472(12) = 5, and 15 is the smallest unused number that is a multiple of 5.
		

Crossrefs

A365060 a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that has a common factor with A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).

Original entry on oeis.org

2, 4, 6, 5, 10, 7, 14, 3, 9, 12, 15, 8, 16, 18, 20, 21, 22, 13, 26, 24, 25, 30, 28, 27, 33, 32, 34, 19, 38, 35, 36, 40, 42, 39, 44, 52, 45, 46, 50, 49, 56, 48, 55, 54, 60, 58, 31, 62, 11, 66, 64, 68, 57, 70, 63, 65, 51, 72, 75, 74, 69, 76, 77, 78, 80, 84, 81, 87, 82, 43, 86, 85, 88, 91, 90, 92, 95
Offset: 1

Views

Author

Scott R. Shannon, Aug 19 2023

Keywords

Comments

In the first 100000 terms the only fixed point is 9, and it is likely no more exist. In the same range the smallest missing numbers are 503, 839, 877. The sequence is conjectured to be a permutation of the integers >= 2.

Examples

			a(3) = 6 as a(2) = 4 and A008472(4) = 2, and 6 is the smallest unused number that shares a factor with 2.
a(8) = 3 as a(7) = 14 and A008472(14) = 9, and 3 is the smallest unused number that shares a factor with 9.
		

Crossrefs

A058974 a(n) = 0 if n = 1 or a prime, otherwise a(n) = s + a(s) iterated until no change occurs, where s (A008472) is sum of distinct primes dividing n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 2, 3, 7, 0, 5, 0, 12, 10, 2, 0, 5, 0, 7, 17, 13, 0, 5, 5, 25, 3, 12, 0, 17, 0, 2, 26, 19, 17, 5, 0, 38, 18, 7, 0, 17, 0, 13, 10, 30, 0, 5, 7, 7, 27, 25, 0, 5, 18, 12, 35, 31, 0, 17, 0, 59, 17, 2, 23, 18, 0, 19, 51, 26, 0, 5, 0, 57, 10, 38, 23, 23, 0, 7, 3, 43, 0, 17, 35, 55, 34, 13, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2001

Keywords

References

  • E. N. Gilbert, An interesting property of 38, unpublished, circa 1992. Shows that 38 is the only solution of a(n) = n.

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; local i,j,k,t1,t2; if n = 1 or isprime(n) then 0 else A008472(n) + f(A008472(n)); fi; end;
  • Mathematica
    f[n_Integer] := If[n == 1 || PrimeQ[n], 0, Plus @@ First[ Transpose[ FactorInteger[n]]]]; Table[Plus @@ Drop[ FixedPointList[f, n], 1], {n, 1, 80}]
  • PARI
    A008472(n) = vecsum(factor(n)[, 1]); \\ This function from M. F. Hasler, Jul 18 2015
    A058974(n) = if((1==n)||isprime(n),0,A008472(n)+A058974(A008472(n))); \\ Antti Karttunen, Oct 30 2017, after the Maple-program.

Extensions

More terms from Antti Karttunen, Oct 30 2017

A063968 Numbers k such that sopf(k) = sopf(k+2), where sopf(k) = A008472(k).

Original entry on oeis.org

2, 340, 845, 950, 1340, 3724, 5694, 6102, 7657, 8991, 9331, 9709, 10323, 11388, 11390, 12460, 15870, 18912, 19778, 20882, 21715, 24732, 26978, 29052, 29632, 32428, 33596, 35028, 38178, 42718, 43068, 45750, 46102, 50396, 53251, 61408
Offset: 1

Views

Author

Jason Earls, Sep 05 2001

Keywords

Crossrefs

Programs

  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)==sopf(n+2),j=concat(j,n))); j
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    { n=0; r=sopf(1); s=sopf(2); for (m=1, 10^9, t=sopf(m + 2); if(r==t, write("b063968.txt", n++, " ", m); if (n==1000, break)); r=s; s=t ) } \\ Harry J. Smith, Sep 04 2009
Previous Showing 21-30 of 416 results. Next