cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 416 results. Next

A182184 a(1)= 0; for n > 1, a(n) = a(n-1) - sopf(n) if that number is positive, otherwise a(n)= a(n-1)+ sopf(n), where sopf(n) is the sum of the distinct primes dividing n (A008472).

Original entry on oeis.org

0, 2, 5, 3, 8, 3, 10, 8, 5, 12, 1, 6, 19, 10, 2, 0, 17, 12, 31, 24, 14, 1, 24, 19, 14, 29, 26, 17, 46, 36, 5, 3, 17, 36, 24, 19, 56, 35, 19, 12, 53, 41, 84, 71, 63, 38, 85, 80, 73, 66, 46, 31, 84, 79, 63, 54, 32, 1, 60, 50, 111, 78, 68, 66, 48, 32, 99, 80, 54, 40
Offset: 1

Views

Author

Michel Lagneau, Apr 17 2012

Keywords

Comments

a(n) = 0 for n = 16, 222, 4298, 16652, 37783, 256263, 414054, 530270, ...

Crossrefs

Programs

  • Maple
    with(numtheory):a0:=0:for n from 2 to 100 do: x:=factorset(n):n1:=nops(x): p:=sum(x[i],i=1..n1):a1:=a0-p:if a1< 0 then a1:=a0+p:else fi: printf(`%d, `, a1): a0:=a1: od:

A242404 a(n) = Sum over i and j with j<=i and i=1.. sopf(n) of binomial(d(i), d(j)), where d(i) are the prime divisors of n and sopf(n) = sum of the distinct primes dividing n (A008472).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 12, 1, 5, 1, 23, 12, 1, 1, 5, 1, 12, 37, 57, 1, 5, 1, 80, 1, 23, 1, 26, 1, 1, 167, 138, 23, 5, 1, 173, 288, 12, 1, 62, 1, 57, 12, 255, 1, 5, 1, 12, 682, 80, 1, 5, 464, 23, 971, 408, 1, 26, 1, 467, 37, 1, 1289, 226, 1, 138, 1773, 55
Offset: 1

Views

Author

Michel Lagneau, May 13 2014

Keywords

Comments

This sequence is very rich in properties. We cite a few.
If n = p^m where p is prime, then a(n) = 1 => a(A025475(n)) = 1.
If n = 2^i*3^j, i and j >= 1, then a(n) = 5 => a(A033845(n)) = 5.
We observe a very interesting property with a fractal structure if a(n) = 23.
a(n) = 23 if n belongs to the set E = {n} = {14, 28, 35, 56, 98, 112, 175, 196, 224, 245, 392, 448, 686, ...} and we observe that E1 = {n/7} = {2, 4, 5, 8, 14, 16, 25, 28, 32, 35, 56, 64, 98, 112, 125, 128, 175, 196, 224, 245, 256, ...} = E2 union E3 union E4 where:
E2 = {2, 4, 8, 16, 32, 64, 128, ...} are powers of 2 (A000079),
E3 = {5, 25, 125, 625, 3125, ...} are powers of 5 (A000351),
E4 = {14, 28, 35, 56, 98, 112, 175, 196, 224, 245, ...} = E, a surprising result: E1 contains E => this shows a fractal structure.
But you can continue with other values of a(n) in order to find similar properties. For example, a(n) = 55 if n belongs to the set F = {n} = {70, 140, 280, 350, 490, 560, 700, 980, 1120, ...} => F1 = {n/70} = { 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 40, 49, 50, 56, 64, 70, 80, ...} = F2 union F3 union F4 union F5 where:
F2 = {2, 4, 8, 16, 32, 64, 128, ...} are powers of 2 (A000079),
F3 = {5, 25, 125, 625, 3125, ...} are powers of 5 (A000351),
F4 = {1, 7, 49, 343, 2401, ...} are powers of 7 (A000420)
and F5 = {10, 14, 20, 28, 35, 40, 50, 56, 70, 80, 98, 100, 112, 140, ...} contains F but also E.

Examples

			a(10) = 12 because 12 = 2^2*3 => sopf(12) = 2+3=5 and a(10) = sum{j<=i=1..5} binomial(d(i),d(j)) = binomial(2,2)+ binomial(5,2)+ binomial(5,5) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 200 do:x:=factorset(n):n1:=nops(x): r:=sum('sum('binomial(x[j],x[i])','j'=i..n1)','i'=1..n1):printf(`%d, `,r):od:

A256122 Number of iterations needed to reach 0 or 1 under the map n-> n-sopf(n), where sopf(n) is the sum of the distinct primes dividing n (A008472).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 1, 3, 1, 4, 2, 3, 2, 2, 1, 2, 2, 3, 1, 4, 1, 2, 2, 3, 1, 2, 5, 2, 2, 2, 1, 6, 3, 2, 3, 4, 1, 3, 1, 2, 2, 3, 2, 3, 1, 6, 2, 3, 1, 2, 1, 3, 2, 4, 2, 4, 1, 2, 5, 3, 1, 3, 3, 2, 4
Offset: 1

Views

Author

Michel Lagneau, Mar 15 2015

Keywords

Examples

			a(16) = 3 because:
16 - sopf(16) = 16 - 2 = 14 (first iteration);
14 - sopf(14) = 14 - 9 = 5 (second iteration);
5 - sopf(5)= 5 - 5 = 0 (third iteration and reaching 0).
a(22) = 3 because:
22 - sopf(22) = 22 - 13 = 9 (first iteration);
9 - sopf(9) = 9 - 3 = 6 (second iteration);
6 - sopf(6)= 6 - 5 = 1 (third iteration and reaching 1).
		

Crossrefs

Cf. A008472.

Programs

  • Maple
    A008472:= n -> add(d, d = select(isprime, numtheory[divisors](n))):
      A:= proc(n)
            a := 0 ;
            x := n ;
            while x>1 do
                    x := x-A008472(x) ;
                    a := a+1 ;
            end do:
            a ;
    end proc:
    seq(A(n), n=1..100);
  • Mathematica
    t[n_] := -1 + Length[NestWhileList[#-Total[Transpose[FactorInteger[#]][[1]]]&, n, #>1&]]; Table[t[n], {n, 100}]

A286190 Smallest k such that sopf(k) >= sopf(k+1) >= ... >= sopf(k+n), where sopf = A008472.

Original entry on oeis.org

3, 13, 13, 491, 1516, 12721, 12721, 109453, 1473257, 120797465, 624141002, 4044619541, 136797949237, 315400191511, 1285600699441
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Comments

Here sopf(k) is the sum of the distinct primes dividing k (A008472).
a(16) > 10^13.

Examples

			sopf(13) = 13, sopf(14) = 9, sopf(15) = 8, sopf(16) = 2. This is the first run of 4 nonincreasing values, so a(3) = 13.
		

Crossrefs

Programs

  • Mathematica
    sopf[n_] := If[n == 1, 0, Total[First /@ FactorInteger@n]]; s = Array[ sopf, 120000]; Table[ SelectFirst[ Range[ Length@s - n], Sort[t = Take[s, {#, # + n}]] == Reverse[t] &], {n, 8}]

A287093 a(0) = 0, a(1) = 2; a(2*n) = sopf(a(n)), a(2*n+1) = a(n) + a(n+1), where sopf() is the sum of the distinct prime factors (A008472).

Original entry on oeis.org

0, 2, 2, 4, 2, 6, 2, 6, 2, 8, 5, 8, 2, 8, 5, 8, 2, 10, 2, 13, 5, 13, 2, 10, 2, 10, 2, 13, 5, 13, 2, 10, 2, 12, 7, 12, 2, 15, 13, 18, 5, 18, 13, 15, 2, 12, 7, 12, 2, 12, 7, 12, 2, 15, 13, 18, 5, 18, 13, 15, 2, 12, 7, 12, 2, 14, 5, 19, 7, 19, 5, 14, 2, 17, 8, 28, 13, 31, 5, 23, 5, 23, 5, 31, 13, 28, 8, 17, 2, 14, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

A variation on Stern's diatomic sequence.

Examples

			a(0) = 0;
a(1) = 2;
a(2) = a(2*1) = sopf(a(1)) = 2;
a(3) = a(2*1+1) = a(1) + a(2) = 4;
a(4) = a(2*2) = sopf(a(2)) = 2;
a(5) = a(2*2+1) = a(2) + a(3) = 6;
a(6) = a(2*3) = sopf(a(3)) = 2, etc.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := If[EvenQ[n], DivisorSum[a[n/2], # &, PrimeQ[#] &], a[(n - 1)/2] + a[(n + 1)/2]]; Table[a[n], {n, 0, 90}]
  • PARI
    a(n) = if (n==0, 0, if (n ==1, 2, if (n%2, a((n-1)/2) + a((n+1)/2), vecsum(factor(a(n/2))[,1])))); \\ Michel Marcus, Dec 17 2017

A328174 a(n) is the least integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

20, 140, 54, 189, 378, 1365, 540, 945, 1120, 1755, 1539, 3465, 500, 1815, 4256, 6384, 14645, 5280, 1323, 1029, 864, 23871, 34579, 12903, 1715, 2673, 11934, 5589, 106805, 12285, 5600, 11625, 21070, 41915, 4459, 16905, 61320, 6615, 11178, 5145, 110839, 19656, 109225
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(k, n) = my(fk=factor(k)); n*numdiv(fk)*sopf(fk) == sigma(fk);
    a(n) = {my(k=1); while (!isok(k, n), k++); k;}

A328175 a(n) is the largest integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

42, 470, 923, 2159, 12924, 3735, 4316, 8786, 23939, 24412, 76502, 26768, 28612, 47849, 145620, 36002, 118204, 189143, 116999, 105657, 109559, 252474, 142687, 236860, 504899, 265682, 388798, 1558808, 154559, 345687, 709564, 544829, 383086, 652049, 361905, 1193075
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    lista(nn) = {/* nn should be > 10^7 */ my(nmax = 43, v = vector(nmax, k, List())); for (n=2, nn, my(f=factor(n), q); if (denominator(q=sigma(f)/(numdiv(f)*sopf(f))) == 1, if (q <= nmax, listput(v[q], n)););); for (i=1, nmax, if (#v[i] == 0, break); print1(vecmax(Vec(v[i])), ", "););}

A329463 Carmichael numbers k such that sopf(k) is also a Carmichael number, where sopf(k) is the sum of the distinct primes dividing k (A008472).

Original entry on oeis.org

1618206745, 2265650401, 28645206001, 56969031001, 226244724265, 235389006721, 235771174081, 296423001601, 432133594201, 626086650961, 772165132201, 884500464001, 1167647270401, 4384350028801, 4714081284241, 5438971500481, 5916902791801, 7160462614273, 11458124974801
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2019

Keywords

Comments

There are 1108 terms below 2^64: 75 have 5 prime factors, 1 have 7 prime factors (307696492063107001), and 1032 have 9 prime factors.
The corresponding values of sopf(a(n)) are 1729, 1105, 1105, 1105, 115921, 2821, 2821, 2821, 15841, 2821, 1729, 10585, 2821, 2821, 75361, 2821, 15841, 2821, 334153, ...

Examples

			1618206745 = 5 * 23 * 43 * 229 * 1429 is a Carmichael number, and 5 + 23 + 43 + 229 + 1429 = 1729 is also a Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; sopf[n_] := Total[FactorInteger[n][[;; , 1]]]; s={}; Do[If[carmQ[n] && carmQ[sopf[n]], AppendTo[s, n]], {n, 2, 3*10^10}]; s

A336657 Numbers k such that 2^k - 1 is divisible by the sum of the distinct primes dividing k (A008472).

Original entry on oeis.org

12, 24, 36, 48, 52, 72, 96, 104, 108, 144, 192, 208, 216, 288, 324, 330, 345, 384, 385, 416, 432, 462, 576, 648, 660, 664, 665, 676, 690, 768, 832, 840, 864, 924, 972, 990, 1035, 1152, 1190, 1296, 1302, 1320, 1328, 1330, 1352, 1380, 1386, 1428, 1430, 1530, 1536
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2020

Keywords

Comments

Since 2^p == 2 (mod p) for all primes p, all the terms of this sequence are composites. Similar considerations show that there are no semiprimes in this sequence.
The odd terms are relatively rare: 345, 385, 665, 1035, 1725, 1925, ...
If k is a term and d|k then d*k is also a term. In particular, all the numbers of the form 2^i * 3^j, with i > 1 and j > 0, are terms.

Examples

			12 = 2^2 * 3 is a term since 2^12 - 1 = 4095 is divisible by 2 + 3 = 5.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Total[FactorInteger[n][[;;, 1]]]; Select[Range[2, 1500], PowerMod[2, #, b[#]] == 1 &]

Formula

The number of terms not exceeding x is x^(1 - c_1 * log(log(log(x)))/log(log(x))) <= N(x) <= c_2 * x * log(log(x))/log(x) for all sufficiently large values of x, where c_1 and c_2 are positive constants (Banks and Luca, 2007).

A363292 Numbers whose sum of (distinct) prime divisors (A008472) equals 7.

Original entry on oeis.org

7, 10, 20, 40, 49, 50, 80, 100, 160, 200, 250, 320, 343, 400, 500, 640, 800, 1000, 1250, 1280, 1600, 2000, 2401, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 16000, 16807, 20000, 20480, 25000, 25600, 31250, 32000, 40000, 40960
Offset: 1

Views

Author

M. F. Hasler, Jul 20 2023

Keywords

Crossrefs

Cf. A008472 (sopf), A000420 (7^n), A033846 (2^m*5^n), A362948 (A008472 = 5).

Programs

  • Mathematica
    seq[max_] := Union[Join[7^Range[Floor[Log[7, max]]], Flatten@ Table[2^i*5^j, {i, 1, Log2[max]}, {j, 1, Log[5, max/2^i]}]]]; seq[40000] (* Amiram Eldar, Jul 27 2023 *)
  • PARI
    select( {is_A363292(n)=vecsum(factor(n,0)[,1])==7}, [1..13^4]) \\ alternatively: [n | n<-[1..13^4], A008472(n)==7]

Formula

Union of A000420 = {7^k ; k > 0} and A033846 = {2^j*5^k ; j, k > 0}.
Sum_{n>=1} 1/a(n) = 5/12. - Amiram Eldar, Jul 27 2023
Previous Showing 61-70 of 416 results. Next