A309955
a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.
Original entry on oeis.org
1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
(h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..31);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
A319670
a(n) = [x^n] Product_{k>=2} 1/(1 - x^k)^n.
Original entry on oeis.org
1, 0, 2, 3, 14, 30, 119, 301, 1078, 3036, 10242, 30624, 100451, 310128, 1004817, 3158343, 10182982, 32345186, 104145896, 332953929, 1072383374, 3442913407, 11100120528, 35742258497, 115377720235, 372326184555, 1203406838428, 3890040945078, 12588182588373, 40748118469180
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - x^k)^n , {k, 2, n}], {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[((1 - x)/QPochhammer[x])^n, {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, k] - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]
A386720
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^3) is the g.f. of A023872.
Original entry on oeis.org
1, 1, 19, 163, 1571, 15276, 152029, 1525420, 15460771, 157716235, 1617959044, 16672687769, 172459185341, 1789587777849, 18621317408384, 194222638392213, 2029985619026851, 21256104343844595, 222937740908641405, 2341629730618924374, 24627719497316157396, 259326672761381979574
Offset: 0
-
with(numtheory):
G(x) := series(exp(add(sigma[4](k)*x^k/k, k = 1..25)), x, 26):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..25);
-
Table[SeriesCoefficient[Product[1/(1-x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[4, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
A296162
a(n) = [x^n] Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^n.
Original entry on oeis.org
1, 1, 5, 19, 89, 406, 1913, 9073, 43505, 209971, 1019390, 4971781, 24343037, 119579006, 589050663, 2908727839, 14393759457, 71360342129, 354372852011, 1762416036422, 8776797353574, 43761058841638, 218431753457637, 1091385769314272, 5458068218285909, 27319061357620056
Offset: 0
-
Table[SeriesCoefficient[Product[((1 - x^(3 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
(* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
A304460
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^3).
Original entry on oeis.org
1, 1, 44, 4410, 905840, 318906400, 172185088824, 132357574570221, 137406570363495360, 185242628827767255255, 314645673306845990409300, 657405676947400829561901359, 1656968286301847988118098735168, 4957425610652588047512198547937050
Offset: 0
-
nmax = 20; Table[SeriesCoefficient[Product[1/(1-x^k)^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 20; Table[SeriesCoefficient[1/QPochhammer[x]^(n^3), {x, 0, n}], {n, 0, nmax}]
A254927
Coefficient of x^n in Product_{k=0..n} (1+k*x)^k.
Original entry on oeis.org
1, 8, 238, 15715, 1822678, 327061056, 83839010860, 29063729300694, 13090011332041111, 7428850394493811712, 5185703819680371737432, 4366227375438927437584444, 4363140133466727238167744916, 5104897162398639619205564019232, 6912594322573705179830176812524216
Offset: 1
-
Table[Coefficient[Expand[Product[(1+k*x)^k,{k,0,n}]],x^n],{n,1,20}] (* or *)
p=1; Table[p=Expand[p*(1+n*x)^n]; Coefficient[p,x^n],{n,1,20}] (* faster *)
A301702
a(n) = [x^n] Product_{k>=0} 1/(1 - x^(2^k))^n.
Original entry on oeis.org
1, 1, 5, 19, 89, 401, 1877, 8821, 41969, 200899, 967605, 4681491, 22739705, 110816343, 541561333, 2653061819, 13024808161, 64063300481, 315624211781, 1557318893473, 7694243895289, 38060959885345, 188482408625373, 934323819631893, 4635781966972721, 23020536772620401
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - x^(2^k))^n, {k, 0, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Product[(1 + x^(2^k))^(n (k + 1)), {k, 0, n}], {x, 0, n}], {n, 0, 25}]
A301971
a(n) = [x^n] Product_{k>=1} 1/(1 - x^prime(k))^n.
Original entry on oeis.org
1, 0, 2, 3, 10, 30, 77, 252, 682, 2136, 6182, 18766, 56173, 169351, 512990, 1551828, 4720170, 14348289, 43751984, 133502873, 408029510, 1248460587, 3823949824, 11724787763, 35980251181, 110510334780, 339674840715, 1044812449722, 3215861978150, 9904301974294, 30521063942312, 94103983534015
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - x^Prime[k])^n, {k, 1, n}], {x, 0, n}], {n, 0, 31}]
A319457
a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.
Original entry on oeis.org
1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0
-
Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]
A356507
G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 18, 34, 60, 109, 192, 339, 591, 1027, 1768, 3032, 5165, 8755, 14766, 24786, 41417, 68912, 114193, 188478, 309939, 507821, 829197, 1349437, 2189105, 3540253, 5708422, 9177939, 14715345, 23530180, 37527544, 59700283, 94741244, 149991677
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 34*x^7 + 60*x^8 + 109*x^9 + 192*x^10 + 339*x^11 + 591*x^12 + 1027*x^13 + 1768*x^14 + ...
such that
A(x) = 1 + x*P(x) + x^3*P(x)^2 + x^6*P(x)^3 + x^10*P(x)^4 + x^15*P(x)^5 + x^21*P(x)^6 + ... + x^(n*(n+1)/2) * P(x)^n + ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
-
{a(n) = my(A = sum(m=0,n, x^(m*(m+1)/2) / prod(k=1,n,(1 - x^k +x*O(x^n))^m))); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
Comments