cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A309955 a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.

Original entry on oeis.org

1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
          (h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..31);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
         Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

A319670 a(n) = [x^n] Product_{k>=2} 1/(1 - x^k)^n.

Original entry on oeis.org

1, 0, 2, 3, 14, 30, 119, 301, 1078, 3036, 10242, 30624, 100451, 310128, 1004817, 3158343, 10182982, 32345186, 104145896, 332953929, 1072383374, 3442913407, 11100120528, 35742258497, 115377720235, 372326184555, 1203406838428, 3890040945078, 12588182588373, 40748118469180
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Comments

Number of partitions of n into parts > 1, if there are n kinds of parts.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n , {k, 2, n}], {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[((1 - x)/QPochhammer[x])^n, {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, k] - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]

Formula

a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(k) - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 3.293558598422332665054219310876308... and c = 0.2154241499279313950113565475... - Vaclav Kotesovec, Oct 06 2018

A386720 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^3) is the g.f. of A023872.

Original entry on oeis.org

1, 1, 19, 163, 1571, 15276, 152029, 1525420, 15460771, 157716235, 1617959044, 16672687769, 172459185341, 1789587777849, 18621317408384, 194222638392213, 2029985619026851, 21256104343844595, 222937740908641405, 2341629730618924374, 24627719497316157396, 259326672761381979574
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2025

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[4](k)*x^k/k, k = 1..25)), x, 26):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[4, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_4(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 10.783710654896500462544161711323081108292517438268962307143535279238... and c = 0.2464683956609371456774144752559018514863700235623819263696832303304...

A296162 a(n) = [x^n] Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 1, 5, 19, 89, 406, 1913, 9073, 43505, 209971, 1019390, 4971781, 24343037, 119579006, 589050663, 2908727839, 14393759457, 71360342129, 354372852011, 1762416036422, 8776797353574, 43761058841638, 218431753457637, 1091385769314272, 5458068218285909, 27319061357620056
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(3 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k + x^(2*k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.1069752682291604222843644516987970799026747758649349... and c = 0.271879273312907861082536692355942116774864... - Vaclav Kotesovec, May 13 2018

A304460 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^3).

Original entry on oeis.org

1, 1, 44, 4410, 905840, 318906400, 172185088824, 132357574570221, 137406570363495360, 185242628827767255255, 314645673306845990409300, 657405676947400829561901359, 1656968286301847988118098735168, 4957425610652588047512198547937050
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2018

Keywords

Comments

In general, for m>=3, coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^m) is asymptotic to n^(m*n)/n!.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-x^k)^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[1/QPochhammer[x]^(n^3), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A254927 Coefficient of x^n in Product_{k=0..n} (1+k*x)^k.

Original entry on oeis.org

1, 8, 238, 15715, 1822678, 327061056, 83839010860, 29063729300694, 13090011332041111, 7428850394493811712, 5185703819680371737432, 4366227375438927437584444, 4363140133466727238167744916, 5104897162398639619205564019232, 6912594322573705179830176812524216
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Expand[Product[(1+k*x)^k,{k,0,n}]],x^n],{n,1,20}] (* or *)
    p=1; Table[p=Expand[p*(1+n*x)^n]; Coefficient[p,x^n],{n,1,20}] (* faster *)

Formula

a(n) ~ exp(n+3/8) * n^(2*n-1/2) / (sqrt(2*Pi) * 3^n).

A301702 a(n) = [x^n] Product_{k>=0} 1/(1 - x^(2^k))^n.

Original entry on oeis.org

1, 1, 5, 19, 89, 401, 1877, 8821, 41969, 200899, 967605, 4681491, 22739705, 110816343, 541561333, 2653061819, 13024808161, 64063300481, 315624211781, 1557318893473, 7694243895289, 38060959885345, 188482408625373, 934323819631893, 4635781966972721, 23020536772620401
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2018

Keywords

Comments

Number of binary partitions of n into parts of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(2^k))^n, {k, 0, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[(1 + x^(2^k))^(n (k + 1)), {k, 0, n}], {x, 0, n}], {n, 0, 25}]

A301971 a(n) = [x^n] Product_{k>=1} 1/(1 - x^prime(k))^n.

Original entry on oeis.org

1, 0, 2, 3, 10, 30, 77, 252, 682, 2136, 6182, 18766, 56173, 169351, 512990, 1551828, 4720170, 14348289, 43751984, 133502873, 408029510, 1248460587, 3823949824, 11724787763, 35980251181, 110510334780, 339674840715, 1044812449722, 3215861978150, 9904301974294, 30521063942312, 94103983534015
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

Number of partitions of n into prime parts of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^Prime[k])^n, {k, 1, n}], {x, 0, n}], {n, 0, 31}]

A319457 a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^n/(1 - x^(2*k))^(2*n).
a(n) = [x^n] exp(n*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).

A356507 G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 34, 60, 109, 192, 339, 591, 1027, 1768, 3032, 5165, 8755, 14766, 24786, 41417, 68912, 114193, 188478, 309939, 507821, 829197, 1349437, 2189105, 3540253, 5708422, 9177939, 14715345, 23530180, 37527544, 59700283, 94741244, 149991677
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 34*x^7 + 60*x^8 + 109*x^9 + 192*x^10 + 339*x^11 + 591*x^12 + 1027*x^13 + 1768*x^14 + ...
such that
A(x) = 1 + x*P(x) + x^3*P(x)^2 + x^6*P(x)^3 + x^10*P(x)^4 + x^15*P(x)^5 + x^21*P(x)^6 + ... + x^(n*(n+1)/2) * P(x)^n + ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, x^(m*(m+1)/2) / prod(k=1,n,(1 - x^k +x*O(x^n))^m))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions involving P(x), the partition function (A000041).
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n.
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k>=1} (1 - x^k)^n.
(3) A(x) = Sum_{n>=0} x^n * P(x)^n * Product_{k=1..n} (1 - x^(2*k-1)*P(x))/(1 - x^(2*k)*P(x)).
(4) A(x) = 1/(1 - x*P(x)/(1 + x*(1-x)*P(x)/(1 - x^3*P(x)/(1 + x^2*(1-x^2)*P(x)/(1 - x^5*P(x)/(1 + x^3*(1-x^3)*P(x)/(1 - x^7*P(x)/(1 + x^4*(1-x^4)*P(x)/(1 - ...))))))))), a continued fraction.
Previous Showing 21-30 of 32 results. Next