cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A144282 Second column (m=2) of triangle S2hat(-3) = A144280.

Original entry on oeis.org

1, 3, 30, 294, 4599, 81081, 1837836, 47609100, 1449052605, 49597258095, 1908702935370, 81045039516210, 3775424041048275, 191061229964098725, 10445176764205306200, 613084928455370309400, 38459158233446064893625, 2567221442902306374982875
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144280, A008545 (m=1 column), A144283 (m-3 column).

Formula

a(n) = A144280(n+2,2), n>=0.

A153270 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2, read by rows.

Original entry on oeis.org

3, 3, 12, 3, 15, 105, 3, 18, 162, 1944, 3, 21, 231, 3465, 65835, 3, 24, 312, 5616, 129168, 3616704, 3, 27, 405, 8505, 229635, 7577955, 295540245, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435
Offset: 0

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

Row sums are {3, 15, 123, 2127, 69555, 3751827, 303356775, 34403458143, 5214459678387, 1018396843935195, 249088654250968899, ...}.

Examples

			Triangle begins as:
  3;
  3, 12;
  3, 15, 105;
  3, 18, 162,  1944;
  3, 21, 231,  3465,  65835;
  3, 24, 312,  5616, 129168,  3616704;
  3, 27, 405,  8505, 229635,  7577955, 295540245;
  3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800;
		

Crossrefs

Cf. this sequence (m=2), A153271 (m=3), A153272 (m=4).

Programs

  • Magma
    m:=2;
    function T(n,k)
      if k eq 0 then return NthPrime(m);
      else return (&*[j*n + NthPrime(m): j in [0..k]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    m:=2; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
  • Mathematica
    T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
    Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = my(m=2); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    def T(n, k):
        m=2
        if (k==0): return nth_prime(m)
        else: return product(j*n + nth_prime(m) for j in (0..k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019

Formula

T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2.

Extensions

Edited by G. C. Greubel, Dec 03 2019

A349971 Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 15, 0, 1, 4, 21, 80, 105, 0, 1, 5, 36, 231, 880, 945, 0, 1, 6, 55, 504, 3465, 12320, 10395, 0, 1, 7, 78, 935, 9576, 65835, 209440, 135135, 0, 1, 8, 105, 1560, 21505, 229824, 1514205, 4188800, 2027025, 0
Offset: 1

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Examples

			Array starts:
[1] 1, 0,   0,    0,      0,       0,         0,           0, ... A000007
[2] 1, 1,   3,   15,    105,     945,     10395,      135135, ... A001147
[3] 1, 2,  10,   80,    880,   12320,    209440,     4188800, ... A008544
[4] 1, 3,  21,  231,   3465,   65835,   1514205,    40883535, ... A008545
[5] 1, 4,  36,  504,   9576,  229824,   6664896,   226606464, ... A008546
[6] 1, 5,  55,  935,  21505,  623645,  21827575,   894930575, ... A008543
[7] 1, 6,  78, 1560,  42120, 1432080,  58715280,  2818333440, ... A049209
[8] 1, 7, 105, 2415,  74865, 2919735, 137227545,  7547514975, ... A049210
[9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211
Triangle starts:
[1] [1]
[2] [1, 0]
[3] [1, 1,  0]
[4] [1, 2,  3,   0]
[5] [1, 3, 10,  15,    0]
[6] [1, 4, 21,  80,  105,     0]
[7] [1, 5, 36, 231,  880,   945,      0]
[8] [1, 6, 55, 504, 3465, 12320,  10395,      0]
[9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0]
		

Crossrefs

Programs

  • Magma
    [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 22 2022
  • Mathematica
    A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 21 2021 *)
  • SageMath
    def A(n, k): return -(-n)^k*falling_factorial(1/n, k)
    def T(n, k): return A(n-k+1, k)
    for n in (1..9): print([A(n, k) for k in (1..8)])
    for n in (1..9): print([T(n, k) for k in (1..n)])
    

Formula

From G. C. Greubel, Feb 22 2022: (Start)
A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array).
T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle).
T(2*n, n) = (-1)^(n-1)*A158886(n). (End)

A364660 Numerators of coefficients in expansion of (1 + x)^(1/4).

Original entry on oeis.org

1, 1, -3, 7, -77, 231, -1463, 4807, -129789, 447051, -3129357, 11094993, -159028233, 574948227, -4188908511, 15359331207, -906200541213, 3358272593907, -25000473754641, 93422822977869, -1401342344668035, 5271716439465465, -39777496770512145, 150462705175415505, -4564035390320936985
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(1/4) = 1 + x/4 - 3*x^2/32 + 7*x^3/128 - 77*x^4/2048 + 231*x^5/8192 - 1463*x^6/65536 + ...
Coefficients are 1, 1/4, -3/32, 7/128, -77/2048, 231/8192, -1463/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(1/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[1/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(1/4))) \\ Michel Marcus, Aug 02 2023

A225478 Triangle read by rows, 4^k*s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 3, 4, 21, 40, 16, 231, 524, 336, 64, 3465, 8784, 7136, 2304, 256, 65835, 180756, 170720, 72320, 14080, 1024, 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096, 40883535, 125416476, 143221680, 81946816, 25939200, 4609024, 430080, 16384, 1267389585, 4051444896, 4941537984, 3113238016, 1131902464, 246636544, 31768576, 2228224, 65536
Offset: 0

Views

Author

Peter Luschny, May 17 2013

Keywords

Comments

Triangle T(n,k), read by rows, given by (3, 4, 7, 8, 11, 12, 15, 16, ... (A014601)) DELTA (4, 0, 4, 0, 4, 0, 4, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015.

Examples

			[n\k][    0,       1,       2,       3,      4,     5,    6 ]
[0]       1,
[1]       3,       4,
[2]      21,      40,      16,
[3]     231,     524,     336,      64,
[4]    3465,    8784,    7136,    2304,    256,
[5]   65835,  180756,  170720,   72320,  14080,  1024,
[6] 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096.
		

Crossrefs

T(n, 0) ~ A008545; T(n, n) ~ A000302; T(n, n-1) ~ A002700.
row sums ~ A034176; alternating row sums ~ A008545.
Cf. A225471, A132393 (m=1), A028338 (m=2), A225477 (m=3).

Programs

  • Mathematica
    s[][0, 0] = 1; s[m][n_, k_] /; (k > n || k < 0) = 0; s[m_][n_, k_] := s[m][n, k] = s[m][n - 1, k - 1] + (m*n - 1)*s[m][n - 1, k];
    T[n_, k_] := 4^k*s[4][n, k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    @CachedFunction
    def SF_CS(n, k, m):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m)
    for n in (0..8): [SF_CS(n, k, 4) for k in (0..n)]

Formula

For a recurrence see the Sage program.
T(n,k) = 4^k * A225471(n,k). - Philippe Deléham, May 14 2015.

A286723 Column k = 1 of the triangle A225471; Sheffer ((1 - 3*x)^(-3/4), (-1/4)*log(1 - 4*x)).

Original entry on oeis.org

1, 10, 131, 2196, 45189, 1105182, 31354119, 1012861224, 36717532425, 1476342400050, 65212709985675, 3139386801018300, 163605030141437325, 9176588125543758150, 551225830134140520975, 35305848011347321438800, 2401944921672748059294225, 172980447467901106243829850
Offset: 0

Views

Author

Wolfdieter Lang, May 29 2017

Keywords

Comments

a(n) is, for n >= 1, the total volume of the binomial(n+1, n) rectangular polytopes (hyper-cuboids) built from n orthogonal vectors with lengths of the sides from the set {3 + 4*j | j=0..n}. See the formula a(n) = sigma[4,3]^{(n+1)}_n and an example below.

Examples

			a(2) = 131 because sigma[4,3]^{(3)}_2 = 3*(7 + 11) + 7*11 = 131. There are three rectangles (2D rectangular polytopes) built from two orthogonal vectors of different lengths from the set of {3,7,11} of total area 131.
		

Crossrefs

Cf. A008545 (k=0), A225471.

Formula

a(n) = A225471(n+1, 1), n >= 1.
E.g.f.: (d/dx) ((1 - 4*x)^(-3/4)*((-1/4)*log(1 - 4*x))) = (4 - 3*log(1-4*x)) / (4*(1-4*x)^(7/4)).
a(n) = sigma[4,3]^{(n+1)}_n, n >= 0, with the elementary symmetric function sigma[4,3]^{(n+1)}_n of degree n of the n+1 numbers 3, 7, 11, ..., (1 + 4*n), and sigma[4,3]^{(n+1)}_0 := 1.
Previous Showing 41-46 of 46 results.