cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 595 results. Next

A359587 Fully multiplicative with a(p) = A008578(1+A329697(p)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 4, 1, 2, 4, 5, 2, 6, 3, 5, 2, 4, 3, 8, 3, 5, 4, 5, 1, 6, 2, 6, 4, 5, 5, 6, 2, 3, 6, 7, 3, 8, 5, 7, 2, 9, 4, 4, 3, 5, 8, 6, 3, 10, 5, 7, 4, 5, 5, 12, 1, 6, 6, 7, 2, 10, 6, 7, 4, 5, 5, 8, 5, 9, 6, 7, 2, 16, 3, 5, 6, 4, 7, 10, 3, 5, 8, 9, 5, 10, 7, 10, 2, 3, 9, 12, 4, 5, 4, 5, 3, 12
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2023

Keywords

Crossrefs

Programs

  • PARI
    A008578(n) = if(1==n,1,prime(n-1));
    A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A359587(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 1] = A008578(1+A329697(f[i, 1]))); factorback(f); };

Formula

For n >= 1: (Start)
a(A000265(n)) = a(2*n) = a(n).
A001222(a(n)) = A087436(n),
A056239(a(n)) = A329697(n),
A318995(a(n)) = A336396(n) = A329697(A336466(n)).
(End)

A362463 Array of numbers read by upward antidiagonals: leading row lists the primes as they were in the 19th century (A008578); the following rows give absolute values of differences of previous row.

Original entry on oeis.org

1, 1, 2, 0, 1, 3, 1, 1, 2, 5, 0, 1, 0, 2, 7, 1, 1, 2, 2, 4, 11, 0, 1, 2, 0, 2, 2, 13, 1, 1, 2, 0, 0, 2, 4, 17, 0, 1, 2, 0, 0, 0, 2, 2, 19, 1, 1, 2, 0, 0, 0, 0, 2, 4, 23, 0, 1, 2, 0, 0, 0, 0, 0, 2, 6, 29, 1, 1, 0, 2, 2, 2, 2, 2, 2, 4, 2, 31, 0, 1, 0, 0, 2, 0, 2, 0, 2, 0, 4, 6, 37, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 4, 41
Offset: 1

Views

Author

N. J. A. Sloane, May 08 2023

Keywords

Comments

The Gilbreath transform (cf. A362451) of A008578.
Analogous to A036262. The Gilbreath conjecture is that the initial terms of the rows are 1,(1,0)* = A135528.

Examples

			The array begins:
  1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
  1 1 2 2 4  2  4  2  4  6  2  6  4  2  4  6  6  2  6  4
  0 1 0 2 2  2  2  2  2  4  4  2  2  2  2  0  4  4  2  2
  1 1 2 0 0  0  0  0  2  0  2  0  0  0  2  4  0  2  0  2
  0 1 2 0 0  0  0  2  2  2  2  0  0  2  2  4  2  2  2  0
  1 1 2 0 0  0  2  0  0  0  2  0  2  0  2  2  0  0  2  2
  0 1 2 0 0  2  2  0  0  2  2  2  2  2  0  2  0  2  0  0
  1 1 2 0 2  0  2  0  2  0  0  0  0  2  2  2  2  2  0  0
  0 1 2 2 2  2  2  2  2  0  0  0  2  0  0  0  0  2  0  0
  1 1 0 0 0  0  0  0  2  0  0  2  2  0  0  0  2  2  0  0
The first few antidiagonals are:
  1,
  1, 2,
  0, 1, 3,
  1, 1, 2, 5,
  0, 1, 0, 2, 7,
  1, 1, 2, 2, 4, 11,
  0, 1, 2, 0, 2, 2, 13,
  1, 1, 2, 0, 0, 2, 4, 17,
  0, 1, 2, 0, 0, 0, 2, 2, 19,
  1, 1, 2, 0, 0, 0, 0, 2, 4, 23,
  0, 1, 2, 0, 0, 0, 0, 0, 2, 6, 29,
		

Crossrefs

Programs

  • Mathematica
    A362463[dmax_]:=With[{d=Reverse[NestList[Abs[Differences[#]]&,Join[{1},Prime[Range[dmax-1]]],dmax-1]]},Array[Diagonal[d,#]&,dmax,1-dmax]];A362463[20] (* Generates 20 antidiagonals *) (* Paolo Xausa, May 08 2023 *)

A363627 a(n) = greatest product < n of some subset of the divisors of n, or if n is in A008578 then a(n) = n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 8, 13, 7, 5, 8, 17, 12, 19, 10, 7, 11, 23, 18, 5, 13, 9, 14, 29, 20, 31, 16, 11, 17, 7, 27, 37, 19, 13, 32, 41, 36, 43, 22, 27, 23, 47, 36, 7, 25, 17, 26, 53, 36, 11, 32
Offset: 1

Views

Author

Denis Ivanov, Jun 12 2023

Keywords

Comments

a(n) = n <=> n in A008578.
For composite n, a(n) < n < A363501(n) and where both bounds are products of divisors of n and as tight as possible.

Examples

			n = 4; divisors: [1,2,4]; subsets: [[], [1], [2], [4], [1, 2], [1, 4], [2, 4], [1, 2, 4]]; products: [1, 1, 2, 4, 2, 4, 8, 8]; the maximal product that is lesser than 4 is 2, so a(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    If[PrimeQ@n || n == 1, n,
      Last@Select[Union[Times @@@ Subsets[Divisors@n]], # < n &]];
  • PARI
    a(n) = my(d=divisors(n), nb = #d, m=1); forsubset(nb, s, my(p=vecprod(vector(#s, k, d[s[k]]))); if (p1, m, n); \\ Michel Marcus, Jun 17 2023

A365708 a(n) for n >= 2 is the smallest term of A008578 m dividing n such that n/m is not a square, a(1) = 2.

Original entry on oeis.org

2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

David James Sycamore, Sep 16 2023

Keywords

Comments

In other words, a(n) is the least prime divisor of n for n = m^2, (m > 1), otherwise a(n) = 1. (Every term is 1 or a prime.) Compare with A007913.

Examples

			a(1) = 2, since 2 is the smallest m such that 1/m is not a square.
a(2) = 1, since 2/1 = 2 is not a square (likewise for all primes p, a(p) = 1).
a(4) = 2, since 4/1 = 4, a square, but 4/2 = 2, not a square, and so on.
If n is a square with lpf(n) = p, then a(n) = p, the least m such that n/m is not a square.
		

Crossrefs

Programs

  • Mathematica
    {2}~Join~Table[SelectFirst[Divisors[n], ! IntegerQ@ Sqrt[n/#] &], {n, 2, 120}] (* Michael De Vlieger, Sep 17 2023 *)
  • PARI
    a(n) = fordiv(n, d, if (!issquare(n/d), return(d))); n+1; \\ Michel Marcus, Sep 17 2023

A029896 Convolution of Thue-Morse sequence A001285 with A008578 = {1, primes}.

Original entry on oeis.org

1, 4, 9, 16, 27, 43, 63, 89, 118, 153, 193, 243, 297, 358, 427, 492, 571, 661, 755, 853, 961, 1074, 1181, 1312, 1448, 1586, 1747, 1900, 2057, 2221, 2389, 2575, 2780, 2993, 3189, 3417, 3641, 3870, 4127, 4384
Offset: 0

Views

Author

Keywords

A094742 Duplicate of A008578.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83
Offset: 1

Views

Author

Keywords

A131690 a(n) = Product_{k=1..n} A008578(k)^A008578(n-k+1).

Original entry on oeis.org

1, 2, 12, 360, 151200, 2095632000, 7551819475200000, 7286477990937425280000000, 16326289449604557795871699200000000000, 48235535472088469901966394717904245153920000000000000, 1927704301314417844667587261525561805756528196513768633600000000000000000
Offset: 1

Views

Author

Darse Billings, Sep 14 2007

Keywords

Comments

Exponents of the prime factorization are the primes in reverse order. Similar to A087315, but where the largest prime factor has an exponent of one instead of two (and 1^n is understood to be the first term).

Examples

			a(5) = 1^7 * 2^5 * 3^3 * 5^2 * 7^1 = 151200.
		

Crossrefs

Programs

  • Mathematica
    s={};Do[p1=Join[{1},Prime[Range[n-1]]];AppendTo[s,Product[p1[[k]]^p1[[n-k+1]],{k,n}]],{n,11}];s (* James C. McMahon, Feb 27 2025 *)

Formula

a(n) = Product_{k=1..n} A008578(k)^A008578(n-k+1) where A008578 is the sequence of primes prepended with 1.

Extensions

a(11) from James C. McMahon, Feb 27 2025

A159900 Concatenation of the first n elements of A008578.

Original entry on oeis.org

1, 12, 123, 1235, 12357, 1235711, 123571113, 12357111317, 1235711131719, 123571113171923, 12357111317192329, 1235711131719232931, 123571113171923293137, 12357111317192329313741
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2009

Keywords

Crossrefs

Cf. A158611.

Formula

Prepend 1 to the terms of A019518(n) - R. J. Mathar, Apr 28 2009.

Extensions

Slightly edited by R. J. Mathar, Apr 28 2009
Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010

A162988 n appears A008578(n) times.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2009

Keywords

Formula

a(n) ~ 2 sqrt(n / log n)

Extensions

Formula and more terms from Charles R Greathouse IV, Nov 02 2009
Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010

A175248 Noncomposites (A008578) with noncomposite (A008578) subscripts.

Original entry on oeis.org

1, 2, 3, 7, 13, 29, 37, 53, 61, 79, 107, 113, 151, 173, 181, 199, 239, 271, 281, 317, 349, 359, 397, 421, 457, 503, 541, 557, 577, 593, 613, 701, 733, 769, 787, 857, 863, 911, 953, 983, 1021, 1061, 1069, 1151, 1163, 1193, 1213, 1291, 1399, 1429, 1439, 1459
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

Noncomposite numbers of order 2.
a(n) = noncomposite(noncomposite(n)) = A008578(A008578(n)). a(1) = 1, a(n) = A055003(n) for n >=2. a(n) U A175249(n+1) = A008578 for n >= 1.

Examples

			a(5) = 13 because a(5) = q(q(5)) = q(7) = 13, q = noncomposite.
		

Crossrefs

Formula

a(n)=A008578(A008578(n)).

Extensions

More terms from Juri-Stepan Gerasimov, Apr 15 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Previous Showing 51-60 of 595 results. Next