cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A233207 Triangle T(n,k), read by rows, given by T(n+k,k)=2*k*(2*n+1).

Original entry on oeis.org

0, 0, 2, 0, 6, 4, 0, 10, 12, 6, 0, 14, 20, 18, 8, 0, 18, 28, 30, 24, 10, 0, 22, 36, 42, 40, 30, 12, 0, 26, 44, 54, 56, 50, 36, 14, 0, 30, 52, 66, 72, 70, 60, 42, 16, 0, 34, 60, 78, 88, 90, 84, 70, 48, 18, 0, 38, 68, 90, 104, 110, 108, 98, 80, 54, 20, 0, 42, 76, 102
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2013

Keywords

Comments

Row sums are A006331(n).
Diagonal sums are A212964(n+1).
T(2n,n)=A002943(n).

Examples

			Triangle begins:
  0
  0, 2
  0, 6, 4
  0, 10, 12, 6
  0, 14, 20, 18, 8
  0, 18, 28, 30, 24, 10
		

Crossrefs

Formula

T(n+k,k) = A005843(k)*A005408(n).
Sum_{k=0..n} T(n,k) = n*(n+1)*(2*n+1)/3 = A006331(n).

A237274 a(n) = A236283(n) mod 9.

Original entry on oeis.org

2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1
Offset: 0

Views

Author

Paul Curtz, Feb 05 2014

Keywords

Comments

(Conjecture) This has period 18: repeat 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1.
The first 19 terms and the following 17 are palindromes.
The sorted terms in the conjectured period are 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 7, 7, 7, 7.
Via the extended differences of A236283(n+1) and A236283(n+18) - A236283(n) which is A008600(n+9)=162, 180,... ,it is easy to see that A236283(0)=2.
A236283(-n) = A236283(n).
A236283(n) difference table:
2, 1, 4, 5, 10, 13, 20, 25, 34, 41,...
-1, 3, 1, 5, 3, 7, 5, 9, 7, 11,... = A097062(n+1)
4, -2, 4, -2, 4, -2, 4, -2, 4, -2,...
-6, 6, -6, 6, -6, 6, -6, 6, -6, 6,... .
A097062(n+1) mod 9 = (a(n+1) -a(n)) mod 9 =
period 18: repeat 8, 3, 1, 5, 3, 7, 5, 0, 7, 2, 0, 4, 2, 6, 4, 8, 6, 1 =b(n). b(n) + b(18-n)= 9, 9, 9, 9, 9, 9, 9, 0, 9.
Ordered b(n)=
period 18: repeat 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8.

Formula

a(n) = A236283(n) mod 9.

A240022 Total number of digits in palindromes with n digits.

Original entry on oeis.org

10, 18, 270, 360, 4500, 5400, 63000, 72000, 810000, 900000, 9900000, 10800000, 117000000, 126000000, 1350000000, 1440000000, 15300000000, 16200000000, 171000000000, 180000000000, 1890000000000, 1980000000000, 20700000000000, 21600000000000
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 30 2014

Keywords

Comments

Let f(1) = g(1) = 10 and f(2) = 1; d(n) denotes the number of digits in f(n) and for n >= 3, f(n) = 10*f(n-1) + 5*10^(d(n-1)-1) if n is odd, otherwise f(n) = f(n-1) + 10^(d(n-1)-1)/2. Let g(n) = 18*f(n) for n > 1. It gives g(2) = 18, g(3) = 270, g(4) = 360, g(5) = 4500, .... In fact g(n) produces a different sequence than a(n).

Examples

			There are nine 2-digit palindromes, so a(2) = 2*9 = 18.
		

Crossrefs

Programs

  • PARI
    print1("10, 18, "); m=9; for(n=3, 24, if(bitand(n, 1), m=10*m); print1(m*n, ", "));
    
  • PARI
    Vec(2*x*(50*x^4+35*x^2+9*x+5)/(10*x^2-1)^2 + O(x^100)) \\ Colin Barker, Mar 31 2014

Formula

a(n) = n*A070252(n).
a(n) = 20*a(n-2)-100*a(n-4) for n>5. G.f.: 2*x*(50*x^4+35*x^2+9*x+5) / (10*x^2-1)^2. - Colin Barker, Mar 31 2014

A242570 a(n) = 252 * n.

Original entry on oeis.org

0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

As lcm(1,2,3,...,9) = 2520, 10*a(n) + k is divisible by each k from 1 through 9.

Crossrefs

Programs

  • Mathematica
    252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
    LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    for(n=0,50,print(252*n))

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 252*x/(x-1)^2.
E.g.f.: 252*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)

A269222 Period 4: repeat [1,9,8,9].

Original entry on oeis.org

1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9, 1, 9, 8, 9
Offset: 1

Views

Author

Peter M. Chema, Jul 11 2016

Keywords

Comments

Digital root of Fib(18*n).
Decimal expansion of 221/1111.

Examples

			For n=2, a(2) = digital root of Fibonacci(18*2) or 14930352; therefore, a(2) = 9, since the digital root of 14930352 = 9.
		

Crossrefs

Programs

Formula

a(n) = A010888(Fibonacci(18*n)).
From Wesley Ivan Hurt, Sep 03 2022: (Start)
a(n) = a(n-4) for n >= 5.
a(n) = (9/4)*(3+(-1)^n)-7*sin(n*Pi/2)/2. (End)
Previous Showing 21-25 of 25 results.