cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A219615 a(n) = Sum_{k=0..12} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16369, 32647, 64839, 127858, 249528, 480492, 910596, 1695222, 3096514, 5546382, 9740686, 16777216, 28354132, 47050564, 76717268, 123012781, 194129627, 301766029, 462411533, 699030226, 1043243132
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 23 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into thirteen or fewer parts.
a(n) is the sum of the first thirteen terms in the n-th row of Pascal's triangle.

Examples

			a(13)= 8191 because there are (2^13) -1 compositions of 14 into thirteen or fewer parts. When 1<= n <= 12, for n=5, a(5) = 2*a(4) = 2*16 = 32. For n=12, a(12) = 2*a(11)= 2*2048 = 4096. When n>12, for n=13, a(13) = 2*a(12) - binomial(12,12) = 2*4096 - 1 = 8191. For n = 15, a(15) = 2*a(14) - binomial(14,12) = 2*16369 - 91 = 32738 - 91 = 32647.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 12}], {n, 0, 40}] (* T. D. Noe, Nov 27 2012 *)
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{1,2,4,8,16,32,64,128,256,512,1024,2048,4096},40] (* Harvey P. Dale, Nov 29 2012 *)
  • PARI
    a(n)=sum(k=1,12,binomial(n,k)) \\ Charles R Greathouse IV, Nov 27 2012

Formula

a(n) = (n^12 - 54n^11 + 1397n^10 - 21450n^9 + 218823n^8 - 1508562n^7 + 7374191n^6 - 23551110n^5 + 58206676n^4 - 48306984n^3 + 173699712n^2 + 312888960n)/479001600. - Charles R Greathouse IV, Nov 27 2012
a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512, a(10)=1024, a(11)=2048, a(12)=4096, a(n)= 13*a(n-1)- 78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+ 1716*a(n-7)- 1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Harvey P. Dale, Nov 29 2012

Extensions

Sequence corrected and extended by T. D. Noe, Nov 26 2012
Definition corrected by Harvey P. Dale, Nov 29 2012

A219676 a(n) = Sum_{k=0..13} binomial(n, k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16383, 32752, 65399, 130238, 258096, 507624, 988116, 1898712, 3593934, 6690448, 12236830, 21977516, 38754732, 67108864, 114159428, 190876696, 313889477, 508019104, 809785133, 1272196666
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 24 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fourteen or fewer parts.
a(n) is the sum of the first fourteen terms in the n-th row of Pascal's triangle.

Examples

			a(14) = 16383 because there are 2^14 = 16384 compositions of 15 into any size parts but one of the compositions (1 + 1 + ... + 1 = 15) has more than fourteen parts.
When 1 <= n <= 13, a(7) = 2*a(6) = 2*64= 128, a(13) = 2*a(12) = 2*4096 = 8192.
When n > 13, a(14) = 2*a(13) - C(13, 13) = 2*8192 - 1 = 16383, a(15) = 2*a(14) - C(14, 13) = 2*16383 - 14 = 32766 - 14 = 32752.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(binomial(n,k),k=0..13):
    map(f, [$0..100]); # Robert Israel, Mar 14 2018
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 13}], {n, 0, 40}] (* T. D. Noe, Nov 26 2012 *)

Formula

a(n) = Sum_{k=1..7} binomial(n+1, 2k-1).
a(n) = 1 +(n^13 -65*n^12 +2015*n^11 -37609*n^10 +470613*n^9 -4081935*n^8 +25378925*n^7 -110205667*n^6 +351042406*n^5 -657328100*n^4 +1303568760*n^3 +771653376*n^2 +4546558080*n)/13!. - corrected by Mokhtar Mohamed, Dec 01 2012
G.f.: (1 - 12*x + 67*x^2 - 230*x^3 + 541*x^4 - 920*x^5 + 1163*x^6 - 1106*x^7 + 791*x^8 - 420*x^9 + 161*x^10 - 42*x^11 + 7*x^12)/(1-x)^14.
a(n) = 2*a(n-1), for 1 <= n <= 13, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1, 13), for n > 13.

Extensions

Corrected and extended by T. D. Noe, Nov 26 2012

A374452 Iterated rascal triangle R3: T(n,k) = Sum_{m=0..3} binomial(n-k,m)*binomial(k,m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 69, 56, 28, 8, 1, 1, 9, 36, 84, 121, 121, 84, 36, 9, 1, 1, 10, 45, 120, 195, 226, 195, 120, 45, 10, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 08 2024

Keywords

Comments

Triangle T(n,k) is the third triangle R3 among the rascal-family triangles; A077028 is triangle R1, A374378 is triangle R2.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 7).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 3).

Examples

			Triangle begins:
--------------------------------------------------
k=     0   1   2   3    4    5    6   7   8   9 10
--------------------------------------------------
n=0:   1
n=1:   1   1
n=2:   1   2   1
n=3:   1   3   3   1
n=4:   1   4   6   4    1
n=5:   1   5  10  10    5    1
n=6:   1   6  15  20   15    6    1
n=7:   1   7  21  35   35   21    7   1
n=8:   1   8  28  56   69   56   28   8   1
n=9:   1   9  36  84  121  121   84  36   9   1
n=10:  1  10  45 120  195  226  195  120  45  10  1
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 3}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Left]

Formula

T(n,k) = 1 + k*(n-k) + 1/4*(k-1)*k*(n-k-1)*(n-k) + 1/36*(k-2)*(k-1)*k*(n-k-2)*(n-k-1)*(n-k).
Row sums give A008860(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A000292(n).
Diagonal T(n+4, n) gives A005894(n).
Diagonal T(n+6, n) gives A247608(n).
Column k=4 difference binomial(n+8, 4) - T(n+8, 4) gives C(n+4,4)=A007318(n+4,4).
Column k=5 difference binomial(n+9, 5) - T(n+9, 5) gives sixth column of (1,5)-Pascal triangle A096943.
G.f.: (1 + 4*x^6*y^3 - 3*x*(1 + y) - 6*x^5*y^2*(1 + y) + 2*x^4*y*(2 + 7*y+ 2*y^2) + x^2*(3 + 10*y + 3*y^2) - x^3*(1 + 11*y + 11*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 09 2024

A220051 Sum_{k=0..14} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767, 65519, 130918, 261156, 519252, 1026876, 2014992, 3913704, 7507638, 14198086, 26434916, 48412432, 87167164, 154276028, 268435456, 459312152, 773201629, 1281220733, 2091005866
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 03 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fifteen or fewer parts.
a(n) = sum(binomial(n+1,2k), for k = 0..7).
a(n) is the sum of the first fifteen terms in the n-th row of Pascal's triangle.

Examples

			a(15) = 32767 because there are 2^15 = 32768 compositions of 16 into any size parts but one of the compositions (1 + 1 + ... + 1 = 16) has more than fifteen parts.
When 1 <= n <= 14, for n=10, a(10) = 2*a(9) = 2*512 = 1024. For n=14, a(14) = 2*a(13) = 2*8192 = 16384.
When n > 14, for n = 15, a(15) = 2*a(14) -C(14,14) = 2*16384 -1 = 32767. For n=20, a(20) = 2*a(19) -C(19,14) = 2*519252 -11626 = 1038504 -11626 = 1026876.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k],{k,0,14}],{n,0,33}] (* Indranil Ghosh, Feb 22 2017 *)
    NestList[{#1 + 1, 2 #2 - Boole[#1 >= 14] Binomial[#1, 14]} & @@ # &, {0, 1}, 33][[All, -1]] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    a(n)=sum(k=0,14,binomial(n,k)) \\ Indranil Ghosh, Feb 23 2017

Formula

a(n) = 1 + (n^14 - 77*n^13 + 2821*n^12 - 6288*n^11 + 947947*n^10 - 10081071*n^9 + 77889383*n^8 - 435638203*n^7 + 1793239448*n^6 - 5043110072*n^5 + 1111159696*n^4 - 8346754416*n^3 + 30605906304*n^2 + 57424792320*n)/14!.
G.f.: (1 - 13x + 79x^2 - 297x^3 + 771x^4 - 1461x^5 + 2083x^6 - 2269x^7 + 1897x^8 - 1211x^9 + 581x^10 - 203x^11 + 49x^12 - 7x^13 + x^14)/(1-x)^15.
a(n) = 2*a(n-1), for 1 <= n <= 14, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1,14), for n> 14.
Previous Showing 11-14 of 14 results.