cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A274705 Rectangular array read by ascending antidiagonals. Row n has the exponential generating function 1/M_{n}(z^n) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only, for n>=1.

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 25, -4, 1, -5, 133, -427, 5, 1, -6, 621, -15130, 12465, -6, 1, -7, 2761, -437593, 4101799, -555731, 7, 1, -8, 11999, -12012016, 1026405753, -2177360656, 35135945, -8, 1, -9, 51465, -325204171, 243458990271, -6054175060941, 1999963458217, -2990414715, 9
Offset: 0

Views

Author

Peter Luschny, Jul 03 2016

Keywords

Examples

			Array starts:
n=1: {1, -2,  3, -4, 5, -6, 7, -8,  9, -10,  11,...} [A181983]
n=2: {1, -3, 25, -427, 12465, -555731, 35135945,...} [A009843]
n=3: {1, -4, 133, -15130, 4101799,  -2177360656,...} [A274703]
n=4: {1, -5, 621, -437593, 1026405753, -6054175060941,...} [A274704]
n=5: {1, -6, 2761, -12012016, 243458990271, ...}
		

Crossrefs

Programs

  • Maple
    ibn := proc(m, k) local w, om, t;
    w := exp(2*Pi*I/m); om := m*x/add(exp(x*w^j), j=0..m-1);
    t := series(om, x, k+m); simplify(k!*coeff(t,x,k)) end:
    seq(seq(ibn(n-k+2, n*k-n-k^2+3*k-1), k=1..n+1),n=0..8);
  • Mathematica
    A274705Row[m_] := Module[{c}, c = CoefficientList[Series[1/MittagLefflerE[m,z^m],
    {z,0,12*m}],z]; Table[Factorial[m*n+1]*c[[m*n+1]], {n,0,9}] ]
    Table[Print[A274705Row[n]], {n,1,6}]
  • Sage
    def ibn(m, k):
        w = exp(2*pi*I/m)
        om = m*x/sum(exp(x*w^j) for j in range(m))
        t = taylor(om, x, 0, k + m)
        return simplify(factorial(k)*t.list()[k])
    def A274705_row(m, size):
        return [ibn(m, k) for k in range(1, m*size, m)]
    for n in (1..4): print(A274705_row(n, 8))

Formula

Recurrence for the m-th row: R(m, n) = -Sum_{k=0..n-1} binomial(m*n+1, m*k+1)*R(m, k) for n >= 1. See Carlitz (1.3).

A189238 E.g.f. x/cos(x)*exp(x/cos(x)).

Original entry on oeis.org

1, 2, 6, 28, 120, 726, 4424, 31928, 249984, 2131690, 20027392, 199240020, 2162269824, 24676708798, 302660939520, 3897794538864, 53264941301760, 763279034957010, 11499327153704960, 181271619624350860
Offset: 1

Views

Author

Vladimir Kruchinin, Apr 19 2011

Keywords

Comments

A(x)=A009843(x)*exp(A009843(x)).

Programs

  • Maxima
    a(n):=sum(binomial(n,k)*k*(1+(-1)^(n-k))*sum(sum(binomial(m,j)/2^(j)*sum((-1)^((n-k)/2-j)*binomial(j,i)*(j-2*i)^(n-k),i,0,floor((j-1)/2)),j,1,m)*binomial(k+m-1,k-1),m,1,n-k),k,1,n-1)+n;
    
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=x/cos(x)*exp(x/cos(x)); /* = x + x^2 + x^3 + 7/6*x^4 + x^5 + 121/120*x^6+ ... */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 21 2011 */

Formula

a(n)=sum(k=1..n-1, binomial(n,k)*k*(1+(-1)^(n-k))*sum(j=1..m, sum(i=0..floor((j-1)/2), binomial(m,j)/2^(j)*sum((-1)^((n-k)/2-j)*binomial(j,i)*(j-2*i)^(n-k)))*binomial(k+m-1,k-1),m,1,n-k))+n.

A243963 a(n) = n*4^n*(-Z(1-n, 1/4)/2 + Z(1-n, 3/4)/2 - Z(1-n, 1)*(1 - 2^(-n))) for n > 0 and a(0) = 0, where Z(n, c) is the Hurwitz zeta function.

Original entry on oeis.org

0, 0, 2, 3, -8, -25, 96, 427, -2176, -12465, 79360, 555731, -4245504, -35135945, 313155584, 2990414715, -30460116992, -329655706465, 3777576173568, 45692713833379, -581777702256640, -7777794952988025, 108932957168730112, 1595024111042171723, -24370173276164456448
Offset: 0

Views

Author

Paul Curtz, Jun 16 2014

Keywords

Comments

Previous name was: 0 followed by -(n+1)*A163747(n).
Difference table of a(n):
0, 0, 2, 3, -8, -25,...
0, 2, 1, -11, -17, 121,...
2, -1, -12, -6, 138, 210,...
-3, -11, 6, 144, 72, -3144,...
-8, 17, 138, -72, -3216, -1608,...
25, 121, -210, -3144, 1608,...
a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence. Its main diagonal is the first upper diagonal multiplied by 2.

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 0, n*4^n*(-Zeta(0, 1-n, 1/4)/2 + Zeta(0, 1-n, 3/4)/2 + Zeta(1-n)*(2^(-n)-1))): seq(a(n), n=0..24); # Peter Luschny, Jul 21 2020
  • Mathematica
    a[0] = 0; a[n_] := -n*SeriesCoefficient[(2*E^x*(1 - E^x))/(1 + E^(2*x)), {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 17 2014 *)

Formula

a(n) = 0, 0, followed by (period 4: repeat 1, 1, -1, -1)*A065619(n+2).
a(2n) = (-1)^(n+1)A009752(n). a(2n+1) = (-1)^n*A009843(n+1).

Extensions

New name by Peter Luschny, Jul 21 2020

A371688 Triangle read by rows: T(n, k) = (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*sinh(x)).

Original entry on oeis.org

1, -1, 3, 5, -50, 25, -61, 1281, -2135, 427, 1385, -49860, 174510, -116340, 12465, -50521, 2778655, -16671930, 23340702, -8335965, 555731, 2702765, -210815670, 1932476975, -4637944740, 3478458555, -772990790, 35135945
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Comments

Expansion of the exponential generating function arctan(sec(x*y)*sinh(x)), nonzero terms only.

Examples

			Triangle starts:
  [0]      1;
  [1]     -1,       3;
  [2]      5,     -50,        25;
  [3]    -61,    1281,     -2135,      427;
  [4]   1385,  -49860,    174510,  -116340,    12465;
  [5] -50521, 2778655, -16671930, 23340702, -8335965, 555731;
		

Crossrefs

Cf. A000364 (column 0), A009843 (main diagonal), A012816 (row sums), A002436 (alternating row sums).

Programs

  • Maple
    egf := arctan(sec(x*y)*sinh(x)):
    serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
    seq(lprint(seq(coeff(coeffx(2*n + 1), y, 2*k), k = 0..n)), n = 0..7);
  • Mathematica
    T[n_,k_]:=(-1)^k*Binomial[2*n+1,2*k]*EulerE[2*n];Flatten[Table[T[n,k],{n,0,6},{k,0,n}]] (* Detlef Meya, Apr 07 2024 *)

Formula

T(n, k) = (-1)^k*binomial(2*n + 1, 2*k)*Euler(2*n). - Detlef Meya, Apr 07 2024

A245683 Array T(n,k) read by antidiagonals, where T(0,k) = -A226158(k) and T(n+1,k) = 2*T(n,k+1) - T(n,k).

Original entry on oeis.org

0, 2, 1, 0, 1, 1, -6, -3, -1, 0, 0, -3, -3, -2, -1, 50, 25, 11, 4, 1, 0, 0, 25, 25, 18, 11, 6, 3, -854, -427, -201, -88, -35, -12, -3, 0, 0, -427, -427, -314, -201, -118, -65, -34, -17, 24930, 12465, 6019, 2796, 1241, 520, 201, 68, 17, 0
Offset: 0

Views

Author

Paul Curtz, Jul 29 2014

Keywords

Comments

Take T(n,k) = -A226158(k) and its transform via T(n+1,k) = 2*T(n,k+1) - T(n,k):
0, 1, 1, 0, -1, 0, 3, 0, -17, ...
2, 1, -1, -2, 1, 6, -3, -34, ... = A230324
0, -3, -3, 4, 11, -12, -65, ...
-6, -3, 11, 18, -35, -118, ...
0, 25, 25, -88, -201, ...
50, 25, -201, -314, ...
0, -427, -427, ...
-854, -427, ...
0, ...
Every row is alternatively an autosequence of the first kind, see A226158, and of the second kind, see A190339.
The second column is twice 1, -3, 25, -427, 12465, ... = (-1)^n*A009843(n) which is in the third column. See A132049(n), numerators of Euler's formula for Pi from the Bernoulli numbers, A243963 and A245244. Hence a link between the Genocchi numbers and Pi.
a(n) is the triangle of the increasing antidiagonals.

Examples

			Triangle a(n):
   0,
   2,  1,
   0,  1,  1,
  -6, -3, -1,  0,
   0, -3, -3, -2, -1,
  50, 25, 11,  4,  1,  0,
  etc.
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 0; t[0, 1] = 1; t[0, k_] := -k*EulerE[k-1, 0]; t[n_, k_] := t[n, k] = -t[n-1, k] + 2*t[n-1, k+1]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 04 2014 *)

A371687 Triangle read by rows: T(n, k) = (-1)^(n-k) * (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*tanh(x)).

Original entry on oeis.org

1, 4, 3, 80, 80, 25, 3904, 5376, 2660, 427, 354560, 626688, 433440, 131712, 12465, 51733504, 111738880, 99242880, 43804992, 9021540, 555731, 11070525440, 28258074624, 30647302400, 17666508288, 5509286640, 816337808, 35135945
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Comments

Expansion of the exponential generating function arctan(sec(x*y)*tanh(x)), nonzero terms only.

Examples

			Triangle starts:
  [0]        1;
  [1]        4,         3;
  [2]       80,        80,       25;
  [3]     3904,      5376,     2660,      427;
  [4]   354560,    626688,   433440,   131712,   12465;
  [5] 51733504, 111738880, 99242880, 43804992, 9021540, 555731;
		

Crossrefs

Cf. A002436 (column 0), A009843 (main diagonal), A012798 (row sums), A012835 (alternating row sums).
Cf. A371688.

Programs

  • Maple
    egf := arctan(sec(x*y)*tanh(x)):
    serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n):
    seq(print(seq((-1)^(n-k)*coeff(coeffx(2*n+1), y, 2*k), k = 0..n)), n = 0..6);
Previous Showing 21-26 of 26 results.