cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A177925 Decimal expansion of sqrt(2730).

Original entry on oeis.org

5, 2, 2, 4, 9, 4, 0, 1, 9, 1, 0, 4, 5, 2, 5, 2, 5, 2, 9, 3, 7, 9, 4, 2, 6, 9, 3, 9, 4, 1, 4, 0, 0, 9, 8, 4, 9, 4, 4, 7, 6, 3, 4, 3, 5, 1, 8, 9, 8, 1, 8, 1, 1, 7, 1, 3, 5, 8, 7, 6, 3, 6, 9, 8, 9, 7, 4, 5, 6, 5, 2, 4, 2, 7, 8, 0, 4, 3, 1, 4, 6, 0, 8, 9, 1, 7, 0, 4, 6, 8, 8, 4, 7, 1, 0, 2, 8, 0, 7, 2, 2, 0, 8, 4, 8
Offset: 2

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(2730) is 52 followed by (repeat 4, 104).
sqrt(2730) = sqrt(2)*sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

Examples

			sqrt(2730) = 52.24940191045252529379...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002194 (decimal expansion of sqrt(3)), A002163 (decimal expansion of sqrt(5)), A010465 (decimal expansion of sqrt(7)), A010470 (decimal expansion of sqrt(13)), A177924 (decimal expansion of (28+sqrt(2730))/56).

Programs

  • Mathematica
    RealDigits[Sqrt[2730],10,120][[1]] (* Harvey P. Dale, Aug 11 2021 *)

A022771 Ordered sequence of distinct terms of the form floor(x^i * floor(x^j)), i,j >= 0, where x = sqrt(7).

Original entry on oeis.org

1, 2, 5, 7, 14, 18, 37, 47, 49, 98, 126, 129, 259, 333, 341, 343, 686, 882, 903, 907, 1814, 2333, 2389, 2399, 2401, 4802, 6174, 6321, 6349, 6352, 12704, 16334, 16723, 16797, 16805, 16807, 33614, 43218, 44247, 44443, 44464, 44467, 88934
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010465 (sqrt(7)).

Extensions

Offset corrected by Sean A. Irvine, May 21 2019

A114344 Starting position of the first n in the decimal expansion of the square root of n, or -1 if n never appears.

Original entry on oeis.org

1, 1, 5, 3, -1, 37, 39, 5, 2, -1, 89, 20, 52, 222, 319, 49, -1, 12, 99, 25, 144, 61, 41, 9, 109, -1, 145, 10, 268, 33, 189, 184, 155, 371, 45, 108, -1, 118, 26, 11, 149, 146, 108, 5, 235, 49, 299, 253, 32, -1, 103, 212, 120, 179, 353, 119, 225, 64, 10, 108, 104
Offset: 0

Views

Author

Cino Hilliard, Dec 22 2006, corrected Jul 18 2007

Keywords

Examples

			For n=5, sqrt(5) = 2.23606797749978969640917366873127623544...
5 occurs in the 37th position so 37 is the 6th entry in the table counting from the 0th entry.
		

Crossrefs

Programs

  • PARI
    digitpos(n) = { local(x,y,r,dot); for(x=0,n, r=sqrt(x); if(issquare(x), y=find(Str(floor(r)),x), y=find(Str(r),x); dot=find(Str(r),"."); if(dot < y, y--); ); if(y, print1(y","),print1(-1",") ) ) }
    find(str,match) = /* Revised 2007 */ { local(lnm,lns,tstr,vstr,x,j); vstr=Vec(Str(str)); match=Str(match); lns=length(str); lnm=length(match); for(x=1,lns-lnm+1, tstr=""; for(j=x,x+lnm-1, tstr=concat(tstr,vstr[j]); ); if(match==tstr,return(x)) ); return(0); }

A161368 Engel expansion of sqrt(7).

Original entry on oeis.org

1, 1, 2, 4, 7, 7, 8, 14, 16, 21, 36, 40, 41, 354, 407, 568, 2253, 2392, 6783, 8608, 10968, 23813, 149663, 1353193, 2273258, 11992211, 18888350, 35589752, 279408946, 926928928, 7122445646, 12200380022, 24793374441, 1006675801235
Offset: 1

Views

Author

Keywords

Examples

			2.645751311... = 1/1+1/(1*1)+1/(1*1*2)+1/(1*1*2*4)+1/(1*1*2*4*7)+1/(1*1*2*4*7*7)+....
		

Crossrefs

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[ {Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[7^(1/2),7! ],50]

Extensions

Added example and link to index - R. J. Mathar, Sep 23 2009

A171536 Decimal expansion of 2/sqrt(7).

Original entry on oeis.org

7, 5, 5, 9, 2, 8, 9, 4, 6, 0, 1, 8, 4, 5, 4, 4, 5, 4, 4, 2, 9, 0, 3, 3, 0, 7, 2, 4, 6, 8, 3, 6, 0, 1, 2, 1, 6, 3, 1, 5, 0, 2, 6, 2, 3, 7, 3, 7, 8, 4, 2, 9, 0, 8, 6, 7, 6, 6, 6, 6, 9, 8, 8, 3, 4, 3, 1, 6, 2, 5, 2, 0, 9, 2, 2, 9, 3, 8, 1, 7, 9, 3, 6, 0, 1, 1, 2, 2, 5, 3, 2, 7, 8, 4, 4, 1, 0, 3, 1, 6, 0, 4, 3, 0, 4
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -2 -1/2 | 5/2 -5/2>.

Examples

			sqrt(4/7) = 0.75592894601845445442903307...
		

Programs

  • Mathematica
    RealDigits[2/Sqrt[7],10,120][[1]] (* Harvey P. Dale, Jan 02 2022 *)

Formula

equals 2*A020764 = 2/A010465.
Previous Showing 41-45 of 45 results.