A161380
Triangle read by rows: T(n,k) = 2*k*T(n-1,n-1) + 1 (n >= 0, 0 <= k <= n), with T(0,0) = 1.
Original entry on oeis.org
1, 1, 3, 1, 7, 13, 1, 27, 53, 79, 1, 159, 317, 475, 633, 1, 1267, 2533, 3799, 5065, 6331, 1, 12663, 25325, 37987, 50649, 63311, 75973, 1, 151947, 303893, 455839, 607785, 759731, 911677, 1063623, 1, 2127247, 4254493, 6381739, 8508985, 10636231
Offset: 0
Triangle begins:
1
1 3
1 7 13
1 27 53 79
1 159 317 475 633
1 1267 2533 3799 5065 6331
-
T := proc(n,k) option remember: if(n=0 and k=0)then return 1: else return 2*k*T(n-1,n-1)+1: fi: end:
for n from 0 to 8 do for k from 0 to n do printf("%d, ",T(n,k)): od: od: # Nathaniel Johnston, Apr 26 2011
-
T[0, 0] = 1; T[n_, k_] := 2*k*T[n - 1, n - 1] + 1;
Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
A085644
a(0) = 1; a(n+1) = a(n)*2n + 2n + 1.
Original entry on oeis.org
1, 1, 5, 25, 157, 1265, 12661, 151945, 2127245, 34035937, 612646885, 12252937721, 269564629885, 6469551117265, 168208329048917, 4709833213369705, 141294996401091181, 4521439884834917825, 153728956084387206085, 5534242419037939419097, 210301211923441697925725
Offset: 0
-
a:= proc(n) option remember;
`if`(n=0, 1, 2*((n-1)*a(n-1)+n)-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 14 2023
-
nxt[{n_,a_}]:={n+1,a*2n+2n+1}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 06 2016 *)
-
sum2x(n) = { s=1; sr=0; forstep(x=2,n,2, s=x*(s+1)+1; print1(s","); sr += 1.0/s; ); print(); print(sr) }
A161381
Triangle read by rows: T(n,k) = n!*2^k/(n-k)! (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 2, 1, 4, 8, 1, 6, 24, 48, 1, 8, 48, 192, 384, 1, 10, 80, 480, 1920, 3840, 1, 12, 120, 960, 5760, 23040, 46080, 1, 14, 168, 1680, 13440, 80640, 322560, 645120, 1, 16, 224, 2688, 26880, 215040, 1290240, 5160960, 10321920, 1, 18, 288, 4032, 48384, 483840, 3870720, 23224320, 92897280, 185794560
Offset: 0
Triangle begins:
1
1 2
1 4 8
1 6 24 48
1 8 48 192 384
1 10 80 480 1920 3840
For n=2 and k=2, T(2,2)=8 since there are exactly 8 functions f from {1,2} to {1,2,3,4} that are injective-plus. Letting f = <f(1),f(2)>, the 8 functions are <1,2>, <1,3>, <2,1>, <2,4>, <3,1>, <3,4>, <4,2>,and <4,3>. - _Dennis P. Walsh_, Nov 20 2012
-
/* As triangle */ [[Factorial(n)*2^k/Factorial((n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 23 2015
-
seq(seq(2^k*n!/(n-k)!,k=0..n),n=0..20); # Dennis P. Walsh, Nov 20 2012
-
Flatten@Table[Pochhammer[n - k + 1, k] 2^k, {n, 0, 20}, {k, 0, n}] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
Comments