cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A161380 Triangle read by rows: T(n,k) = 2*k*T(n-1,n-1) + 1 (n >= 0, 0 <= k <= n), with T(0,0) = 1.

Original entry on oeis.org

1, 1, 3, 1, 7, 13, 1, 27, 53, 79, 1, 159, 317, 475, 633, 1, 1267, 2533, 3799, 5065, 6331, 1, 12663, 25325, 37987, 50649, 63311, 75973, 1, 151947, 303893, 455839, 607785, 759731, 911677, 1063623, 1, 2127247, 4254493, 6381739, 8508985, 10636231
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2009

Keywords

Examples

			Triangle begins:
1
1 3
1 7    13
1 27   53   79
1 159  317  475  633
1 1267 2533 3799 5065 6331
		

Crossrefs

Diagonal gives A010844. Column 2 is A161370.

Programs

  • Maple
    T := proc(n,k) option remember: if(n=0 and k=0)then return 1: else return 2*k*T(n-1,n-1)+1: fi: end:
    for n from 0 to 8 do for k from 0 to n do printf("%d, ",T(n,k)): od: od: # Nathaniel Johnston, Apr 26 2011
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := 2*k*T[n - 1, n - 1] + 1;
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)

A085644 a(0) = 1; a(n+1) = a(n)*2n + 2n + 1.

Original entry on oeis.org

1, 1, 5, 25, 157, 1265, 12661, 151945, 2127245, 34035937, 612646885, 12252937721, 269564629885, 6469551117265, 168208329048917, 4709833213369705, 141294996401091181, 4521439884834917825, 153728956084387206085, 5534242419037939419097, 210301211923441697925725
Offset: 0

Views

Author

Cino Hilliard, Aug 19 2003

Keywords

Comments

Sum of reciprocals = 2.2472460058071954531775930749...

Crossrefs

a(n) = 2 * A010844(n-1) - 1 = A007566(n-1) - 2n - 2 for n>=1.

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n=0, 1, 2*((n-1)*a(n-1)+n)-1)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 14 2023
  • Mathematica
    nxt[{n_,a_}]:={n+1,a*2n+2n+1}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 06 2016 *)
  • PARI
    sum2x(n) = { s=1; sr=0; forstep(x=2,n,2, s=x*(s+1)+1; print1(s","); sr += 1.0/s; ); print(); print(sr) }

Extensions

a(0)=1 prepended and edited by Alois P. Heinz, Mar 14 2023

A161381 Triangle read by rows: T(n,k) = n!*2^k/(n-k)! (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 4, 8, 1, 6, 24, 48, 1, 8, 48, 192, 384, 1, 10, 80, 480, 1920, 3840, 1, 12, 120, 960, 5760, 23040, 46080, 1, 14, 168, 1680, 13440, 80640, 322560, 645120, 1, 16, 224, 2688, 26880, 215040, 1290240, 5160960, 10321920, 1, 18, 288, 4032, 48384, 483840, 3870720, 23224320, 92897280, 185794560
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2009

Keywords

Comments

From Dennis P. Walsh, Nov 20 2012: (Start)
T(n,k) is the number of functions f:[k]->[2n] such that, if f(x)=f(y) or f(x)=2n+1-f(y), then x=y.
We call such functions injective-plus.
Equivalently, T(n,k) gives the number of ways to select k couples from n couples, then choose one person from each of the k selected couples, and then arrange those k individuals in a line. For example, T(50,10) is the number of ways to select 10 U.S. senators, one from each of ten different states, and arrange the senators in a reception line for a visiting dignitary. (End)

Examples

			Triangle begins:
  1
  1  2
  1  4  8
  1  6 24  48
  1  8 48 192  384
  1 10 80 480 1920 3840
For n=2 and k=2, T(2,2)=8 since there are exactly 8 functions f from {1,2} to {1,2,3,4} that are injective-plus. Letting f = <f(1),f(2)>, the 8 functions are <1,2>, <1,3>, <2,1>, <2,4>, <3,1>, <3,4>, <4,2>,and <4,3>. - _Dennis P. Walsh_, Nov 20 2012
		

Crossrefs

A010844 (row sums). Cf. A008279.

Programs

  • Magma
    /* As triangle */ [[Factorial(n)*2^k/Factorial((n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 23 2015
  • Maple
    seq(seq(2^k*n!/(n-k)!,k=0..n),n=0..20); # Dennis P. Walsh, Nov 20 2012
  • Mathematica
    Flatten@Table[Pochhammer[n - k + 1, k] 2^k, {n, 0, 20}, {k, 0, n}] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)

Formula

From Dennis P. Walsh, Nov 20 2012: (Start)
E.g.f. for column k: exp(x)*(2*x)^k.
G.f. for column k: (2*x)^k*k!/(1 - x)^(k+1).
T(n,k) = 2^(k-n)*Sum_{j = 0..n} (binomial(n,j)T(j,i)T(n-j,k-i). (End)
From Peter Bala, Feb 20 2016: (Start)
T(n, k) = 2*n*T(n-1, k-1) = 2*k*T(n-1, k-1) + T(n-1, k) = n*T(n-1, k)/(n - k) = 2*(n - k + 1)*T(n, k-1).
G.f. Sum_{n >= 1} (2*n*x*t)^(n-1)/(1 - (2*n*t - 1)*x)^n = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2 + ....
E.g.f. exp(x)/(1 - 2*x*t) = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2/2! + ....
E.g.f. for row n: (1 + 2*x)^n.
Row reversed triangle is the exponential Riordan array [1/(1 - 2*x), x]. (End)

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
Previous Showing 31-33 of 33 results.