cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A355677 Companion sequence to A355676.

Original entry on oeis.org

4, 5, 4, 7, 8, 3, 1, 2, 1, 3, 4, 2, 7, 8, 3, 4, 2, 6, 4, 6, 0, 5, 0, 3, 1, 3, 4, 2, 6, 0, 5, 4, 3, 1, 5, 6, 4, 5, 0, 7, 0, 3, 4, 2, 6, 2, 5, 4, 7, 8, 5, 1, 2, 6, 4, 6, 0, 5, 4, 5, 1, 2, 5, 4, 4, 4, 5, 8, 3, 1, 7, 6, 4, 5, 4, 5, 8, 3, 5, 3, 4, 4, 5, 0, 1, 8, 7
Offset: 0

Views

Author

Michel Marcus, Jul 14 2022

Keywords

Comments

a(n) is the least m such that 16*((3*m^2 + m)/2 + A355676(n)) + n == 2 (mod 9). - Jinyuan Wang, Jul 15 2022

Crossrefs

Extensions

More terms from Jinyuan Wang, Jul 15 2022

A126049 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 9.

Original entry on oeis.org

2, 3, 5, 7, 4, 8, 1, 4, 7, 8, 8, 1, 8, 4, 1, 7, 4, 4, 5, 4, 5, 5, 8, 2, 2, 7, 1, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 5, 1, 1, 4, 5, 7, 2, 5, 1, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 9] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010878(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A178027 Multiples of 5291.

Original entry on oeis.org

0, 5291, 10582, 15873, 21164, 26455, 31746, 37037, 42328, 47619, 52910, 58201, 63492, 68783, 74074, 79365, 84656, 89947, 95238, 100529, 105820, 111111, 116402, 121693, 126984, 132275, 137566, 142857, 148148, 153439, 158730, 164021, 169312, 174603, 179894, 185185
Offset: 0

Views

Author

Paul Curtz, May 17 2010

Keywords

Crossrefs

Programs

Formula

a(n) = n*5291. - R. J. Mathar, May 24 2010
a(n) mod 9 = A141726(n) = 8 - A010878(n-1). - Jean-François Alcover, Mar 03 2016, after Paul Curtz.
From Elmo R. Oliveira, Jun 26 2025: (Start)
G.f.: 5291*x/(1-x)^2.
E.g.f.: 5291*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Elmo R. Oliveira, Jun 26 2025
Previous Showing 31-33 of 33 results.