cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 97 results. Next

A017770 Binomial coefficients C(54,n).

Original entry on oeis.org

1, 54, 1431, 24804, 316251, 3162510, 25827165, 177100560, 1040465790, 5317936260, 23930713170, 95722852680, 343006888770, 1108176102180, 3245372870670, 8654327655120, 21094923659355, 47153358767970, 96926348578605, 183649923622620, 321387366339585
Offset: 0

Views

Author

Keywords

Comments

Row 54 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^54.
E.g.f.: 1F1(-54; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017771 Binomial coefficients C(55,n).

Original entry on oeis.org

1, 55, 1485, 26235, 341055, 3478761, 28989675, 202927725, 1217566350, 6358402050, 29248649430, 119653565850, 438729741450, 1451182990950, 4353548972850, 11899700525790, 29749251314475, 68248282427325, 144079707346575, 280576272201225, 505037289962205
Offset: 0

Views

Author

Keywords

Comments

Row 55 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^55.
E.g.f.: 1F1(-55; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017772 Binomial coefficients C(56,n).

Original entry on oeis.org

1, 56, 1540, 27720, 367290, 3819816, 32468436, 231917400, 1420494075, 7575968400, 35607051480, 148902215280, 558383307300, 1889912732400, 5804731963800, 16253249498640, 41648951840265, 97997533741800, 212327989773900, 424655979547800, 785613562163430
Offset: 0

Views

Author

Keywords

Comments

Row 56 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^56.
E.g.f.: 1F1(-56; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017773 Binomial coefficients C(57,n).

Original entry on oeis.org

1, 57, 1596, 29260, 395010, 4187106, 36288252, 264385836, 1652411475, 8996462475, 43183019880, 184509266760, 707285522580, 2448296039700, 7694644696200, 22057981462440, 57902201338905, 139646485582065, 310325523515700, 636983969321700
Offset: 0

Views

Author

Keywords

Comments

Row 57 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^57.
E.g.f.: 1F1(-57; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017774 Binomial coefficients C(58,n).

Original entry on oeis.org

1, 58, 1653, 30856, 424270, 4582116, 40475358, 300674088, 1916797311, 10648873950, 52179482355, 227692286640, 891794789340, 3155581562280, 10142940735900, 29752626158640, 79960182801345, 197548686920970, 449972009097765, 947309492837400
Offset: 0

Views

Author

Keywords

Comments

Row 58 of A007318.

Crossrefs

Programs

  • Magma
    [Binomial(58,n): n in [0..58]]; // G. C. Greubel, Nov 13 2018
  • Maple
    seq(binomial(58,n), n=0..58); # Nathaniel Johnston, Jun 24 2011
  • Mathematica
    Binomial[58, Range[0,58]] (* or *) With[{nmax = 58}, CoefficientList[ Series[Hypergeometric1F1[-58, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
  • PARI
    vector(58, n, n--; binomial(58,n)) \\ G. C. Greubel, Nov 13 2018
    
  • Sage
    [binomial(58, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
    

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^58.
E.g.f.: 1F1(-58; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017775 Binomial coefficients C(59,n).

Original entry on oeis.org

1, 59, 1711, 32509, 455126, 5006386, 45057474, 341149446, 2217471399, 12565671261, 62828356305, 279871768995, 1119487075980, 4047376351620, 13298522298180, 39895566894540, 109712808959985, 277508869722315, 647520696018735, 1397281501935165
Offset: 0

Views

Author

Keywords

Comments

Row 59 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^59.
E.g.f.: 1F1(-59; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017776 Binomial coefficients C(60,n).

Original entry on oeis.org

1, 60, 1770, 34220, 487635, 5461512, 50063860, 386206920, 2558620845, 14783142660, 75394027566, 342700125300, 1399358844975, 5166863427600, 17345898649800, 53194089192720, 149608375854525, 387221678682300, 925029565741050, 2044802197953900
Offset: 0

Views

Author

Keywords

Comments

Row 60 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^60.
E.g.f.: 1F1(-60; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017777 Binomial coefficients C(61,n).

Original entry on oeis.org

1, 61, 1830, 35990, 521855, 5949147, 55525372, 436270780, 2944827765, 17341763505, 90177170226, 418094152866, 1742058970275, 6566222272575, 22512762077400, 70539987842520, 202802465047245, 536830054536825, 1312251244423350, 2969831763694950
Offset: 0

Views

Author

Keywords

Comments

Row 61 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^61.
E.g.f.: 1F1(-61; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017778 Binomial coefficients C(62,n).

Original entry on oeis.org

1, 62, 1891, 37820, 557845, 6471002, 61474519, 491796152, 3381098545, 20286591270, 107518933731, 508271323092, 2160153123141, 8308281242850, 29078984349975, 93052749919920, 273342452889765, 739632519584070, 1849081298960175, 4282083008118300
Offset: 0

Views

Author

Keywords

Comments

Row 62 of A007318.

Crossrefs

Programs

  • Magma
    [Binomial(62,n): n in [0..62]]; // G. C. Greubel, Nov 14 2018
  • Maple
    seq(binomial(62,n), n=0..62); # Nathaniel Johnston, Jun 24 2011
  • Mathematica
    Binomial[62, Range[0,62]] (* G. C. Greubel, Nov 14 2018 *)
    CoefficientList[Series[(1+x)^62,{x,0,20}],x] (* Harvey P. Dale, Aug 11 2024 *)
  • PARI
    vector(62, n, n--; binomial(62,n)) \\ G. C. Greubel, Nov 14 2018
    
  • Sage
    [binomial(62, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
    

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^62.
E.g.f.: 1F1(-62; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017779 Binomial coefficients C(63,n).

Original entry on oeis.org

1, 63, 1953, 39711, 595665, 7028847, 67945521, 553270671, 3872894697, 23667689815, 127805525001, 615790256823, 2668424446233, 10468434365991, 37387265592825, 122131734269895, 366395202809685, 1012974972473835, 2588713818544245, 6131164307078475
Offset: 0

Views

Author

Keywords

Comments

Row 63 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^63.
E.g.f.: 1F1(-63; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Previous Showing 11-20 of 97 results. Next