cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A293880 Numbers having '20' as substring of their digits.

Original entry on oeis.org

20, 120, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1220, 1320, 1420, 1520, 1620, 1720, 1820, 1920, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 20 of A292690 and A293869. A121040 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2100],SequenceCount[IntegerDigits[#],{2,0}]>0&] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    is_A293880 = has(n, p=20, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A257225 Numbers that have at least one divisor containing the digit 8 in base 10.

Original entry on oeis.org

8, 16, 18, 24, 28, 32, 36, 38, 40, 48, 54, 56, 58, 64, 68, 72, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 96, 98, 104, 108, 112, 114, 116, 118, 120, 126, 128, 136, 138, 140, 144, 148, 152, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 8.
A011538 (numbers that contain an 8) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 8.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [8] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Maple
    select(t -> has(map(convert,numtheory:-divisors(t),base,10),8), [$1..200]); # Robert Israel, May 14 2015
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 8] > 0 &]
    Select[Range[200],SequenceCount[Flatten[IntegerDigits/@Divisors[#]],{8}]> 0&] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 8), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257225_gen(): return filter(lambda n:any('8' in str(d) for d in divisors(n, generator=True)), count(1))
    A257225_list = list(islice(A257225_gen(), 58)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A175688 Numbers k with property that arithmetic mean of its digits is both an integer and one of the digits of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 111, 120, 123, 132, 135, 147, 153, 159, 174, 195, 201, 204, 210, 213, 222, 231, 234, 240, 243, 246, 258, 264, 285, 306, 312, 315, 321, 324, 333, 342, 345, 351, 354, 357, 360, 369, 375, 396, 402
Offset: 1

Views

Author

Claudio Meller, Aug 09 2010

Keywords

Comments

Subsequence of A061383.
A180160(a(n)) = 0. - Reinhard Zumkeller, Aug 15 2010

Examples

			135 is in the list because (1+3+5)/3 = 3 and 3 is a digit of 135.
		

Crossrefs

Programs

  • Haskell
    a175688 n = a175688_list !! (n-1)
    a175688_list = filter f [0..] where
       f x = m == 0 && ("0123456789" !! avg) `elem` show x
             where (avg, m) = divMod (a007953 x) (a055642 x)
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    idQ[n_]:=Module[{idn=IntegerDigits[n],m},m=Mean[idn];IntegerQ[m] && MemberQ[idn,m]]; Select[Range[0,500],idQ] (* Harvey P. Dale, Jun 10 2011 *)

Extensions

Edited by Reinhard Zumkeller, Aug 13 2010

A284292 Primes containing a digit 8.

Original entry on oeis.org

83, 89, 181, 281, 283, 383, 389, 487, 587, 683, 787, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 983, 1087, 1181, 1187, 1283, 1289, 1381, 1481, 1483, 1487, 1489, 1583, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Subsequence of A011538 and A062677.
Differs from A062677 which contains also the composites 6889 = 83^2, 7387 = 83*89, 23489=83*283, 25187=89*283, 31789 = 83*383 etc. - R. J. Mathar, Mar 27 2017

Crossrefs

Cf. Primes containing a digit k for k = 0 - 9: A056709 (k = 0), A208270 (k = 1), A208272 (k = 2), A212525 (k = 3), A284290 (k = 4), A257667 (k = 5), A284291 (k = 6), A257668 (k = 7), this sequence (k = 8), A106093 (k = 9).

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | 8 in Intseq(p)];
    
  • Maple
    isA284292 := proc(n)
        if isprime(n) then
            convert(convert(n,base,10),set) ;
            if 8 in % then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 1 to 2000 do
        if isA284292(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 27 2017
  • Mathematica
    Select[Prime@ Range@ 500, MemberQ[ IntegerDigits@ #, 8] &] (* Giovanni Resta, Mar 25 2017 *)
  • Python
    from sympy import primerange
    print([n for n in primerange(2, 2000) if '8' in str(n)]) # Indranil Ghosh, Mar 25 2017

A043522 Numbers having two 8's in base 10.

Original entry on oeis.org

88, 188, 288, 388, 488, 588, 688, 788, 808, 818, 828, 838, 848, 858, 868, 878, 880, 881, 882, 883, 884, 885, 886, 887, 889, 898, 988, 1088, 1188, 1288, 1388, 1488, 1588, 1688, 1788, 1808, 1818, 1828, 1838, 1848, 1858, 1868, 1878
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011538.

Programs

  • Mathematica
    Select[Range[2000],DigitCount[#,10,8]==2&]  (* Harvey P. Dale, Mar 20 2011 *)

A043523 Numbers having three 8's in base 10.

Original entry on oeis.org

888, 1888, 2888, 3888, 4888, 5888, 6888, 7888, 8088, 8188, 8288, 8388, 8488, 8588, 8688, 8788, 8808, 8818, 8828, 8838, 8848, 8858, 8868, 8878, 8880, 8881, 8882, 8883, 8884, 8885, 8886, 8887, 8889, 8898, 8988, 9888, 10888
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011538.

Programs

  • Mathematica
    Select[Range[11000],DigitCount[#,10,8]==3&] (* Harvey P. Dale, May 25 2023 *)

A043524 Numbers having four 8's in base 10.

Original entry on oeis.org

8888, 18888, 28888, 38888, 48888, 58888, 68888, 78888, 80888, 81888, 82888, 83888, 84888, 85888, 86888, 87888, 88088, 88188, 88288, 88388, 88488, 88588, 88688, 88788, 88808, 88818, 88828, 88838, 88848, 88858, 88868
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011538.

Programs

  • Mathematica
    Select[Range[100000],DigitCount[#,10,8]==4&] (* Harvey P. Dale, Oct 17 2019 *)

A134777 First digit of n alphabetically.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 4, 5, 1, 1, 8, 9, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 1, 3, 3, 4, 5, 6, 7, 8, 9, 4, 4, 4, 4, 4, 5, 4, 4, 8, 4, 5, 5, 5, 5, 5, 5, 5, 5, 8, 5, 6, 1, 6, 6, 4, 5, 6, 7, 8, 9, 7, 1, 7, 7, 4, 5, 7, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 4, 5, 9, 9, 8, 9, 1, 1, 1, 1, 4
Offset: 0

Views

Author

Rick L. Shepherd, Nov 11 2007

Keywords

Comments

Digits are decimal with names in English (see A000052). A134777(n)=A134778(n) iff n is a repdigit (n=A010785(m)), in which case a(n)=A010888(m), the repeated digit. a(n)=0 only for n=0. a(n)=8 iff n is a member of A011538.

Examples

			a(104) = 4 because the digits of 104 are 1 (one), 0 (zero) and 4 (four) and "four" occurs before both "one" and "zero" alphabetically.
		

Crossrefs

Programs

  • Python
    def alpha(n): return [8, 5, 4, 9, 1, 7, 6, 3, 2, 0].index(n)
    def a(n): return sorted(map(int, str(n)), key=alpha)[0]
    print([a(n) for n in range(105)]) # Michael S. Branicky, Dec 12 2023

A245877 Primes p such that p - d and p + d are also primes, where d is the largest digit of p.

Original entry on oeis.org

263, 563, 613, 653, 1613, 1663, 3463, 4643, 5563, 5653, 6263, 6323, 12653, 13463, 14633, 16063, 16223, 21163, 21563, 25463, 26113, 30643, 32063, 33623, 36313, 41263, 41603, 44263, 53623, 54623, 56003, 60133, 61553, 62213, 62633, 64013, 65413, 105613, 106213
Offset: 1

Views

Author

Colin Barker, Aug 05 2014

Keywords

Comments

Intersection of A245742 and A245743.
The largest digit of a(n) is 6, and the least significant digit of a(n) is 3.
Intersection of A006489, A011536, and complements of A011537, A011538, A011539. - Robert Israel, Aug 05 2014

Examples

			The prime 263 is in the sequence because 263 - 6 = 257 and 263 + 6 = 269 are both primes.
		

Crossrefs

Programs

  • Mathematica
    pdpQ[n_]:=Module[{m=Max[IntegerDigits[n]]},AllTrue[n+{m,-m},PrimeQ]]; Select[ Prime[Range[11000]],pdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 13 2017 *)
  • PARI
    select(p->d=vecsort(digits(p),,4)[1]; isprime(p-d) && isprime(p+d), primes(20000))
    
  • Python
    import sympy
    from sympy import prime
    from sympy import isprime
    for n in range(1,10**5):
      s=prime(n)
      lst = []
      for i in str(s):
        lst.append(int(i))
      if isprime(s+max(lst)) and isprime(s-max(lst)):
        print(s,end=', ')
    # Derek Orr, Aug 13 2014

A095790 Numbers whose name in English contains an "r".

Original entry on oeis.org

3, 4, 13, 14, 23, 24, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1

Views

Author

Michael Joseph Halm, Jul 10 2004

Keywords

Comments

A008520 are numbers which contain an "e", A008540 an "f", A011538 a "g", A008536 an "n", A008519 an "o", A008538 an "s", A008522 a "t", A011534 a "u", A011532 a "w", A011536 an "x" and A008553 a "y"

Examples

			a(1) = 3 because "three" contains an "r", 0, 1 and 2 do not
		

Crossrefs

Previous Showing 21-30 of 32 results. Next