cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A056861 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have an increase at index k (1<=k

Original entry on oeis.org

1, 3, 2, 10, 7, 6, 37, 27, 23, 21, 151, 114, 97, 88, 83, 674, 523, 446, 403, 378, 363, 3263, 2589, 2217, 1999, 1867, 1785, 1733, 17007, 13744, 11829, 10658, 9923, 9452, 9145, 8942, 94828, 77821, 67340, 60689, 56380, 53541, 51644, 50361, 49484, 562595
Offset: 2

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of rises s_{k+1} > s_k in an RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 3 rises, at i = 1, i = 3 and i = 5.
1;
3,2;
10,7,6;
37,27,23,21;
151,114,97,88,83;
674,523,446,403,378,363;
3263,2589,2217,1999,1867,1785,1733;
17007,13744,11829,10658,9923,9452,9145,8942;
94828,77821,67340,60689,56380,53541,51644,50361,49484;
562595,467767,406953,367101,340551,322619,310365,301905,296011,291871;
3535027,2972432,2599493,2348182,2176575,2058068,1975425,1917290,1876075, 1846648,1825501;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493, A011965.

Programs

  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Several terms corrected, R. J. Mathar, Mar 08 2016

A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 0, 10, 14, 16, 0, 37, 54, 63, 68, 0, 151, 228, 271, 296, 311, 0, 674, 1046, 1264, 1396, 1478, 1530, 0, 3263, 5178, 6349, 7084, 7555, 7862, 8065, 0, 17007, 27488, 34139, 38448, 41287, 43184, 44467, 45344, 0, 94828, 155642, 195494, 222044, 239976, 252230, 260690, 266584, 270724
Offset: 2

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of falls s_k > s_{k+1} in a RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, s_1 = 1 and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
0;
0,1;
0,3,4;
0,10,14,16;
0,37,54,63,68;
0,151,228,271,296,311;
0,674,1046,1264,1396,1478,1530;
0,3263,5178,6349,7084,7555,7862,8065;
0,17007,27488,34139,38448,41287,43184,44467,45344;
0,94828,155642,195494,222044,239976,252230,260690,266584,270724;
0,562595,935534,1186845,1358452,1476959,1559602,1617737,1658952,1688379, 1709526;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, `if`(j (p-> seq(coeff(p, x, i), i=1..n-1))(b(n, 1, 0$2)[2]):
    seq(T(n), n=2..12);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = B(n) - B(n-1) - A056861(n,k). - Franklin T. Adams-Watters, Jun 08 2006
Conjecture: T(n,3) = 2*A011965(n). - R. J. Mathar, Mar 08 2016

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Data corrected, R. J. Mathar, Mar 08 2016

A154108 A000110 / (1,2,3,...): (convolved with (1,2,3,...) = Bell numbers).

Original entry on oeis.org

1, 0, 2, 7, 27, 114, 523, 2589, 13744, 77821, 467767, 2972432, 19895813, 139824045, 1028804338, 7905124379, 63287544055, 526827208698, 4551453462543, 40740750631417, 377254241891064, 3608700264369193, 35613444194346451, 362161573323083920, 3790824599495473121
Offset: 1

Author

Gary W. Adamson, Jan 04 2009

Keywords

Comments

This is the sequence which must be convolved with (1,2,3,...), offset 0, to generate the Bell numbers starting (1, 2, 5, 15, 52, ...) offset 1;
equivalent to row sums of triangle A154109 = (1, 2, 5, 15, 52, ...).
A variant of A011965. - R. J. Mathar, Jan 07 2009

Examples

			A000110(5) = 52 = (1, 0, 2, 7, 27) convolved with (1, 2, 3, 4, 5) = (5 + 0 + 6 + 14 + 27).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*(n-k), {k, 0, n}]==BellB[n], {n, 1, nmax+1}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)

Formula

A000110 / (1,2,3,...); where A000110 (the Bell numbers) begins with offset 1: (1, 2, 5, 15, 52, 203, 877, ...).
G.f.: (A000110(x)-1)*(x-1)^2, where A000110(x) is the g.f. of the Bell numbers. - R. J. Mathar, Nov 27 2018

Extensions

More terms from Vaclav Kotesovec, Jul 26 2021

A191099 5th differences of Bell numbers.

Original entry on oeis.org

11, 52, 255, 1335, 7432, 43833, 272947, 1788850, 12303997, 88586135, 666047210, 5218287687, 42518759887, 359651145332, 3152929344235, 28603584325827, 268159523175744, 2594608337127709, 25878365376280647, 265770087291261082, 2807571511844891521
Offset: 0

Author

Keywords

Programs

  • Mathematica
    Differences[BellB[Range[0, 50]], 5]
Previous Showing 11-14 of 14 results.