cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A120986 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k middle edges (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 28, 12, 1, 42, 120, 90, 20, 1, 132, 495, 550, 220, 30, 1, 429, 2002, 3003, 1820, 455, 42, 1, 1430, 8008, 15288, 12740, 4900, 840, 56, 1, 4862, 31824, 74256, 79968, 42840, 11424, 1428, 72, 1, 16796, 125970, 348840, 465120, 325584
Offset: 0

Views

Author

Emeric Deutsch, Jul 21 2006

Keywords

Comments

A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and n+1-k peaks. - Alexander Burstein, May 23 2020
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and k+1 peaks at even height. - Alexander Burstein, Jun 03 2020
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and k peaks at odd height. - Alexander Burstein, Jun 18 2020
An apparent refinement is A338135. - Tom Copeland, Oct 12 2020

Examples

			Triangle starts:
    1;
    2,   1;
    5,   6,   1;
   14,  28,  12,   1;
   42, 120,  90,  20,  1;
  132, 495, 550, 220, 30, 1;
  ...
		

Crossrefs

Cf. A001764 (row sums), A000108, A108767, A013698, A110608.

Programs

  • Maple
    T:=(n,k)->binomial(n+1,k)*binomial(2*(n+1),n-k)/(n+1): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n+1, k]*Binomial[2*(n+1), n-k]/(n+1);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k) = binomial(n+1,k)*binomial(2*(n+1),n-k)/(n+1); \\ Andrew Howroyd, Nov 06 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n + 1, k)*binomial(2*(n + 1), n - k)//(n + 1)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017

Formula

T(n,k) = (1/(n+1))*binomial(n+1,k)*binomial(2*(n+1),n-k).
T(n,0) = A000108(n+1) (the Catalan numbers).
T(n,k) = A108767(n+1,n+1-k).
Sum_{k>=1} k*T(n,k) = binomial(3*n+2,n-1) = A013698(n).
G.f.: G = G(t,z) satisfies G = (1+t*z*G)(1+z*G)^2.
O.g.f.: A(x,t) = 1 + (2 + t)*x + (5 + 6*t + t^2)*x^2 + ... satisfies 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (2 + t)*x + (6 + 8*t + t^2)*x^2 + ..., which is the o.g.f. for A110608. - Peter Bala, Oct 13 2015

A013699 Degree of variety K_{2,n}^2.

Original entry on oeis.org

1, 32, 610, 9842, 147798, 2145600, 30664890, 435668420, 6186432967, 88066807556, 1258885297696, 18084694597452, 261164661944060, 3791317346771584, 55316720239735242, 810944384733610356
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Comments

Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 4n+4 steps with all values less than or equal to n+1 (see A080934).

Crossrefs

Cf. A013698 (q=1), A013700 (q=3), A013701 (q=4), A013702 (q=5).

Programs

  • PARI
    K(n,q=2)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)

A013700 Degree of variety K_{2,n}^3.

Original entry on oeis.org

1, 128, 6765, 265720, 9112264, 290926848, 8916942687, 266668876540, 7853149169635, 228982270335000, 6632994268595136, 191292945772217856, 5500214758962096400, 157819424038439232000, 4521902974531722618723
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Crossrefs

Cf. A013698 (q=1), A013699 (q=2), A013701 (q=4), A013702 (q=5).

Programs

  • PARI
    K(n,q=3)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)

Extensions

Edited by Ralf Stephan, May 13 2003

A013701 Degree of variety K_{2,n}^4.

Original entry on oeis.org

1, 512, 75025, 7174454, 562110290, 39541748736, 2610763825782, 165745451110910, 10262482704258873, 625250747214775916, 37701606156514031251, 2258713106034310399852, 134810129909509070121060
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Comments

Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 6n+8 steps with all values less than or equal to n+1 (see A080934).

Crossrefs

Cf. A013698 (q=1), A013699 (q=2), A013700 (q=3), A013702 (q=5).

Programs

  • PARI
    K(n,q=4)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)
Previous Showing 11-14 of 14 results.