A128316
Triangle read by rows: A000012 * A128315 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 1, 3, -1, 1, 2, 3, -2, 1, 4, -1, 4, -3, 1, 4, 3, -5, 7, -4, 1, 6, -3, 10, -13, 11, -5, 1, 4, 8, -14, 23, -24, 16, -6, 1, 7, -2, 15, -33, 46, -40, 22, -7, 1, 7, 4, -15, 47, -79, 86, -62, 29, -8, 1, 9, -6, 30, -73, 131, -166, 148, -91, 37, -9, 1, 7, 12, -37, 103, -204, 297, -314, 239, -128, 46, -10, 1
Offset: 1
First few rows of the triangle:
1;
1, 1;
3, -1, 1;
2, 3 -2, 1;
4, -1, 4, -3, 1;
4, 3, -5, 7, -4, 1;
6, -3, 10, -13, 11, -5, 1;
4, 8, -14, 23, -24, 16, -6, 1;
...
-
A128316:= func< n,k | (&+[(-1)^(j+k)*Floor(n/j)*Binomial(j-1,k-1): j in [k..n]]) >;
[A128316(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 23 2024
-
T[n_, k_]:= Sum[(-1)^(j+k)*Floor[n/j]*Binomial[j-1,k-1], {j,k,n}];
Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 23 2024 *)
-
def A128316(n,k): return sum((-1)^(j+k)*int(n//j)*binomial(j-1,k-1) for j in range(k,n+1))
flatten([[A128316(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 23 2024
a(28) = 1 inserted and more terms from
Georg Fischer, Jun 06 2023
A096793
Triangle read by rows: a(n,k) is the number of Dyck n-paths containing k odd-length ascents.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 3, 0, 10, 0, 1, 0, 21, 0, 20, 0, 1, 12, 0, 84, 0, 35, 0, 1, 0, 120, 0, 252, 0, 56, 0, 1, 55, 0, 660, 0, 630, 0, 84, 0, 1, 0, 715, 0, 2640, 0, 1386, 0, 120, 0, 1, 273, 0, 5005, 0, 8580, 0, 2772, 0, 165, 0, 1, 0, 4368, 0, 25025, 0, 24024, 0, 5148, 0, 220, 0, 1
Offset: 0
Table begins
.
n |k = 0 1 2 3 4 5 6 7 8
--+---------------------------------------------
0 | 1
1 | 0, 1
2 | 1, 0, 1
3 | 0, 4, 0, 1
4 | 3, 0, 10, 0, 1
5 | 0, 21, 0, 20, 0, 1
6 | 12, 0, 84, 0, 35, 0, 1
7 | 0, 120, 0, 252, 0, 56, 0, 1
8 | 55, 0, 660, 0, 630, 0, 84, 0, 1
.
a(4,0)=3 because the Dyck 4-paths containing no odd-length ascents are UUUUDDDD,UUDUUDDD,UUDDUUDD.
-
bi[n_, k_] := If[IntegerQ[k], Binomial[n, k], 0]; TableForm[Table[bi[(n+k)/2, (n-k)/2]bi[(3n-k)/2+1, (n+k)/2]/((3n-k)/2+1), {n, 0, 10}, {k, 0, n}]]
A124392
A Fine number related number triangle.
Original entry on oeis.org
1, 2, 1, 7, 2, 1, 24, 8, 2, 1, 86, 28, 9, 2, 1, 314, 103, 32, 10, 2, 1, 1163, 382, 121, 36, 11, 2, 1, 4352, 1432, 456, 140, 40, 12, 2, 1, 16414, 5408, 1732, 536, 160, 44, 13, 2, 1, 62292, 20546, 6608, 2064, 622, 181, 48, 14, 2, 1, 237590, 78436, 25314, 7960, 2429, 714, 203, 52, 15, 2, 1
Offset: 0
Triangle begins
1;
2, 1;
7, 2, 1;
24, 8, 2, 1;
86, 28, 9, 2, 1;
314, 103, 32, 10, 2, 1;
1163, 382, 121, 36, 11, 2, 1;
4352, 1432, 456, 140, 40, 12, 2, 1;
16414, 5408, 1732, 536, 160, 44, 13, 2, 1;
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n-j, k)*Binomial(2*j, n-k) ))); # G. C. Greubel, Dec 25 2019
-
[(&+[Binomial(n-j, k)*Binomial(2*j, n-k): j in [0..n-k]]): k in [0..n], n in [0.10]]; // G. C. Greubel, Dec 25 2019
-
seq(seq( add(binomial(n-j, k)*binomial(2*j, n-k), j=0..n-k), k=0..n), n=0..10); # G. C. Greubel, Dec 25 2019
-
Table[Sum[Binomial[n-j, k]*Binomial[2*j, n-k], {j,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 25 2019 *)
-
T(n,k) = sum(j=0, n-k, binomial(n-j, k)*binomial(2*j, n-k)); \\ G. C. Greubel, Dec 25 2019
-
[[sum(binomial(n-j, k)*binomial(2*j, n-k) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 25 2019
A188289
Binomial sum related to rooted trees.
Original entry on oeis.org
0, 2, 3, 14, 45, 167, 609, 2270, 8517, 32207, 122463, 467843, 1794195, 6903353, 26635773, 103020254, 399300165, 1550554583, 6031074183, 23493410759, 91638191235, 357874310213, 1399137067683, 5475504511859, 21447950506395, 84083979575117
Offset: 0
-
List([0..30], n-> Binomial(2*n,n) -(-1)^n -Sum([0..n-1], k-> Binomial(2*k,n-1))); # G. C. Greubel, Apr 29 2019
-
[n eq 0 select 0 else Binomial(2*n, n) -(-1)^n - (&+[Binomial(2*k, n-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Apr 29 2019
-
Table[Binomial[2n,n]-(-1)^n-Sum[Binomial[2k,n-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Dec 10 2012 *)
-
{a(n) = binomial(2*n,n) -(-1)^n -sum(k=0,n-1, binomial(2*k,n-1))}; \\ G. C. Greubel, Apr 29 2019
-
[binomial(2*n,n) -(-1)^n -sum(binomial(2*k, n-1) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Apr 29 2019
A201635
Triangle formed by T(n,n) = (-1)^n*Sum_{j=0..n} C(-n,j), T(n,k) = Sum_{j=0..k} T(n-1,j) for k=0..n-1, and n>=0, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 1, 2, 4, 6, 1, 3, 7, 13, 22, 1, 4, 11, 24, 46, 80, 1, 5, 16, 40, 86, 166, 296, 1, 6, 22, 62, 148, 314, 610, 1106, 1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 1, 8, 37, 128, 367, 920, 2083, 4352, 8518, 15792, 1, 9, 46, 174, 541, 1461, 3544, 7896
Offset: 0
Triangle begins as:
[n]|k->
[0] 1
[1] 1, 0
[2] 1, 1, 2
[3] 1, 2, 4, 6
[4] 1, 3, 7, 13, 22
[5] 1, 4, 11, 24, 46, 80
[6] 1, 5, 16, 40, 86, 166, 296
[7] 1, 6, 22, 62, 148, 314, 610, 1106.
-
A201635 := proc(n,k) option remember; local j;
if n=k then (-1)^n*add(binomial(-n,j), j=0..n)
else add(A201635(n-1,j), j=0..k) fi end:
for n from 0 to 7 do seq(A(n,k), k=0..n) od;
-
T[n_, k_]:= T[n, k]= If[k==n, (-1)^n*Sum[Binomial[-n, j], {j, 0, n}], Sum[T[n-1, j], {j, 0, k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2019 *)
-
{T(n,k) = if(k==n, (-1)^n*sum(j=0,n, binomial(-n,j)), sum(j=0,k, T(n-1,j)))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 27 2019
-
@CachedFunction
def A201635(n, k):
if n==k: return (-1)^n*add(binomial(-n, j) for j in (0..n))
return add(A201635(n-1, j) for j in (0..k))
for n in (0..7) : [A201635(n, k) for k in (0..n)]
A360149
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k,n-2*k).
Original entry on oeis.org
1, 2, 7, 27, 107, 429, 1731, 7012, 28478, 115864, 471991, 1924483, 7852083, 32053208, 130893949, 534673600, 2184482707, 8926392419, 36479840422, 149095843951, 609400587426, 2490900041118, 10181669553847, 41618414303969, 170118507902985, 695366323719302
Offset: 0
-
A360149 := proc(n)
add(binomial(2*n+k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360149(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a[n_] := Sum[Binomial[2*n + k, n - 2*k], {k, 0, Floor[n/2]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\2, binomial(2*n+k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^2*(2/(1+sqrt(1-4*x)))^5)))
A303952
a(n) is the number of monic polynomials P(z) of degree n over the complex numbers such that P(z) divides P(z^2).
Original entry on oeis.org
1, 2, 5, 17, 69, 302, 1367, 6302, 29401, 138356, 655425, 3121439, 14930541, 71675840, 345148893, 1666432817, 8064278289, 39103576700, 189949958333, 924163714217, 4502711570989, 21966152501240, 107284324830303
Offset: 0
For n = 0, P(z) = 1.
For n = 1, P(z) = z or z - 1.
For n = 2, P(z) = z^2, z^2 - 1, z^2 - 2z + 1, z^2 + z or z^2 + z + 1.
Comments