cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A172063 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=6.

Original entry on oeis.org

1, 7, 37, 174, 771, 3300, 13820, 57044, 233108, 945793, 3817351, 15347362, 61520899, 246052888, 982365976, 3916739872, 15599504614, 62076995998, 246866382826, 981218764540, 3898442536366, 15483778158792, 61482966826992
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 6th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+6 that are 4 steps higher than the preceding peak. - David Scambler, Apr 22 2013

Examples

			a(4) = C(14,4) - C(13,3) + C(12,2) - C(11,1) + C(10,0) = 7*13*11 - 26*11 + 66 - 11 + 1 = 771.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • Magma
    k:=6; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
    # 2nd program
    for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=6; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=6; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=6.
a(n) ~ 2^(2*n+7)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+6)*(n+3)*a(n) -(7*n^3+59*n^2+166*n+160)*a(n-1) -2*(2*n+5)*(n+4)*(n+2)*a(n-2)=0. - R. J. Mathar, Feb 19 2016

A172064 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=7.

Original entry on oeis.org

1, 8, 46, 230, 1068, 4744, 20476, 86662, 361711, 1494384, 6126818, 24972326, 101320712, 409609664, 1651162688, 6640469816, 26655382802, 106830738224, 427612715516, 1709790470780, 6830461107736, 27266848437608
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 7th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+7 that are 5 steps higher than the preceding peak. - David Scambler, Apr 22 2013

Examples

			a(4) = C(15,4) - C(14,3) + C(13,2) - C(12,1) + C(11,0) = 7*13*15 - 14*13*2 + 78 - 12 + 1 = 1068.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • Magma
    k:=7; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
    # 2nd program
    for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=7; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=7; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=7.
a(n) ~ 2^(2*n+8)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+7)*(3*n+11)*a(n) -(21*n^3+212*n^2+719*n+840)*a(n-1) -2*(2*n+5)*(n+3)*(3*n+14)*a(n-2)=0. - R. J. Mathar, Feb 19 2016

A172065 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=8.

Original entry on oeis.org

1, 9, 56, 297, 1444, 6656, 29618, 128603, 548591, 2309467, 9624964, 39799813, 163556776, 668796712, 2723729944, 11055878188, 44753742226, 180746332690, 728571706240, 2932018571370, 11783070278816, 47297147250204
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 8th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(16,4) - C(15,3) + C(14,2) - C(13,1) + C(12,0) = 20*91 - 35*13 + 91 - 13 + 1 = 1820 - 455 + 79 = 1444.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172066 (k=9), A172067 (k=10)

Programs

  • Magma
    k:=8; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+8, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^8, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^8, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=8; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=8; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j *binomial(2*n+k-j, n-j), with k=8.
a(n) ~ 2^(2*n+9)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+8)*(3*n+13)*a(n) -(21*n^3 + 247*n^2 + 980*n + 1344)*a(n-1) - 2*(n+3)*(3*n+16)*(2*n+7)*a(n-2) = 0. - R. J. Mathar, Feb 29 2016

A172066 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=9.

Original entry on oeis.org

1, 10, 67, 376, 1912, 9142, 41941, 186880, 815083, 3498146, 14827487, 62236064, 259187048, 1072567256, 4415408372, 18098359424, 73915594466, 300958990724, 1222228100590, 4952609171080, 20030298812596, 80876902778482
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 9th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(17,4) - C(16,3) + C(15,2) - C(14,1) + C(13,0) = 17*4*5*7 - 16*5*7 + 105 - 14 + 1 = 5*7*(68-16) + 92 = 1912.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172067 (k=10).

Programs

  • Magma
    k:=9; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
    # 2nd program
    for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=9; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=9; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j,n-j), with k=9.
a(n) ~ 2^(2*n+10)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+9)*(n+5)*a(n) -(7*n^3+94*n^2+427*n+672)*a(n-1) -2*(2*n+7)*(n+6)*(n+4)*a(n-2)=0. - R. J. Mathar, Feb 19 2016

A172067 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=10.

Original entry on oeis.org

1, 11, 79, 468, 2486, 12323, 58277, 266492, 1188679, 5202523, 22436251, 95630272, 403770544, 1691678428, 7042481236, 29161852240, 120212658034, 493656394350, 2020590599710, 8247228533780, 33579755528278, 136434358356201
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 10th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(18,4) - C(17,3) + C(16,2) - C(15,1) + C(14,0) = 60*51 - 680 + 120 - 15 + 1 = 2486.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), this sequence (k=10).

Programs

  • Magma
    k:=10; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 27 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+10, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^10, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    With[{k=10}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 27 2019 *)
  • PARI
    k=10; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 27 2019
    
  • Sage
    k=10; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 27 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j,n-j), with k=10.
Conjecture: 2*n*(n+10)*(3*n+17)*a(n) - (21*n^3 + 317*n^2 + 1622*n + 2880)*a(n-1) - 2*(3*n+20)*(n+4)*(2*n+9)*a(n-2) = 0. - R. J. Mathar, Feb 21 2016

A113187 Inverse of twin-prime related triangle A111125.

Original entry on oeis.org

1, -3, 1, 10, -5, 1, -35, 21, -7, 1, 126, -84, 36, -9, 1, -462, 330, -165, 55, -11, 1, 1716, -1287, 715, -286, 78, -13, 1, -6435, 5005, -3003, 1365, -455, 105, -15, 1, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1, 352716, -293930, 203490
Offset: 0

Views

Author

Paul Barry, Oct 17 2005

Keywords

Comments

Row sums are (-1)^n*A000984. Diagonal sums are (-1)^n*A014301(n+1). An interesting factorization is (1/sqrt(1+4x)),(sqrt(1+4x)-1)/2)(1/(1+x),x/(1+x)).
The Z-sequence for this Riordan array is [-3,1], and the A-sequence is [1,-2,1]. For the Z- and A-sequence of Riordan arrays see the W. Lang link, with references, under A006232. - Wolfdieter Lang, Oct 18 2012
This triangle appears in the formula (x-1/x)^(2*n+1) = sum(T(n,k)*(x^(2*k+1) - 1/x^(2*k+1)),k=0..n), n >= 0. Proof from the inversion of the formula given in an Oct 18 2012 comment on A111125, due to the Riordan property. - Wolfdieter Lang, Nov 14 2012

Examples

			Triangle T(n,k) begins:
n\k     0      1      2     3      4    5    6   7   8  9 ...
0:      1
1:     -3      1
2:     10     -5      1
3:    -35     21     -7     1
4:    126    -84     36    -9      1
5:   -462    330   -165    55    -11    1
6:   1716  -1287    715  -286     78  -13    1
7:  -6435   5005  -3003  1365   -455  105  -15   1
8:  24310 -19448  12376 -6188   2380 -680  136 -17   1
9: -92378  75582 -50388 27132 -11628 3876 -969 171 -19  1
... Reformatted by Wolfdieter Lang, Oct 17 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
Recurrence from the Z-sequence [-3,1] (see a comment above):  T(3,0) = -3*T(2,0) + 1*T(2,1) = -3*10 + (-5) = -35.
Recurrence from the A-sequence [1,-2,1]: T(5,1) = 1*T(4,0) -2*T(4,1) + 1*T(4,2) = 126 -2*(-84) +36 = 330. (End)
		

Formula

Riordan array ((sqrt(1+4x)-1)/(2x*sqrt(1+4x)), (1+2x-sqrt(1+4x))/(2x)).
T(n, k)=(-1)^(n-k)*C(2n+1, n+k+1); T(n, k)=sum{j=0..n, (-1)^(n-k)*C(2n-j, n-j)C(j, k)}.
O.g.f. column k: ((2-c(-x))/(1+4*x))*(1-c(-x))^k, with the o.g.f. c(x) of A000108 (Catalan), k>=0. From the Riordan property given above. - Wolfdieter Lang, Oct 17 2012
O.g.f. of the row polynomials R(n,x) = sum(T(n,k)*x^k,k=0..n): ((2-c(-z))/(1+4*z))/(1-x*(1-c(-z))) = 1/((1+4*z)*(x-(1-x)^2*z))*(x+2*x*z-2*z + (1+x)*z*c(-z)), with the o.g.f. c(x) of A000108. - Wolfdieter Lang, Oct 18 2012

A109244 A tree-node counting triangle.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 7, 3, 1, 46, 24, 11, 4, 1, 166, 86, 40, 16, 5, 1, 610, 314, 148, 62, 22, 6, 1, 2269, 1163, 553, 239, 91, 29, 7, 1, 8518, 4352, 2083, 920, 367, 128, 37, 8, 1, 32206, 16414, 7896, 3544, 1461, 541, 174, 46, 9, 1, 122464, 62292, 30086, 13672, 5776, 2232
Offset: 0

Views

Author

Paul Barry, Jun 23 2005

Keywords

Comments

Columns include A026641,A014300,A014301. Inverse matrix is A109246. Row sums are A014300. Diagonal sums are A109245.

Examples

			Rows begin:
  1;
  1,1;
  4,2,1;
  13,7,3,1;
  46,24,11,4,1;
  166,86,40,16,5,1;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n+j-k, j-k) )))); # G. C. Greubel, Feb 19 2019
  • Magma
    [[(&+[(-1)^(n-j)*Binomial(n+j-k, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[(-1)^(n-j)*Binomial[n+j-k, j-k], {j,0,n}], {n,0,12}, {k,0,n}] //Flatten  (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n+j-k, j-k))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [[sum((-1)^(n-j)*binomial(n+j-k, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
    

Formula

Number triangle T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n+i-k, i-k).
Riordan array (1/(1-x*c(x)-2*x^2*c(x)^2), x*c(x)) where c(x)=g.f. of A000108.
The production matrix M (discarding the zeros) is:
1, 1;
3, 1, 1;
3, 1, 1, 1;
3, 1, 1, 1, 1;
... such that the n-th row of the triangle is the top row of M^n. - Gary W. Adamson, Feb 16 2012

A143362 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k protected vertices (0<=k<=n-1). A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 17, 13, 10, 1, 1, 43, 50, 22, 15, 1, 1, 123, 141, 109, 33, 21, 1, 1, 343, 481, 325, 205, 46, 28, 1, 1, 1004, 1491, 1286, 631, 351, 61, 36, 1, 1, 2938, 4929, 4280, 2861, 1101, 562, 78, 45, 1, 1, 8791, 15840, 15662, 10025, 5676, 1783, 855, 97
Offset: 1

Views

Author

Emeric Deutsch, Aug 20 2008

Keywords

Comments

Row sums are the Catalan numbers (A000108).
Sum(k*T(n,k),k>=0) = A014301(n).
T(n,0) = A143363(n)

Examples

			T(3,2)=1 because among the five ordered trees with 3 edges only the path tree has 2 vertices at least two edges away from the leaf.
Triangle starts:
1;
1,1;
3,1,1;
6,6,1,1;
17,13,10,1,1;
43,50,22,15,1,1;
		

Crossrefs

Programs

  • Maple
    eq:=G-1/(1-z*G)-z*(t-1)*(G-1)/(1+z-z*G): G:=RootOf(eq,G): Gser:=simplify(series(G-1,z=0,13)): for n to 11 do P[n]:=sort(expand(coeff(Gser,z,n))) end do: for n to 11 do seq(coeff(P[n],t,j),j=0..n-1) end do; # yields sequence in triangular form

Formula

G.f.: G-1, where G=G(t,z) satisfies G = 1/(1-zG) + z(t-1)(G-1)/(1+z-zG).

A114596 Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having abscissa of first return equal to 2k (2<=k<=n). A hill in a Dyck path is a peak at level 1.

Original entry on oeis.org

1, 0, 2, 1, 0, 5, 2, 2, 0, 14, 6, 4, 5, 0, 42, 18, 12, 10, 14, 0, 132, 57, 36, 30, 28, 42, 0, 429, 186, 114, 90, 84, 84, 132, 0, 1430, 622, 372, 285, 252, 252, 264, 429, 0, 4862, 2120, 1244, 930, 798, 756, 792, 858, 1430, 0, 16796, 7338, 4240, 3110, 2604, 2394, 2376, 2574, 2860, 4862, 0, 58786
Offset: 2

Views

Author

Emeric Deutsch, Dec 12 2005

Keywords

Comments

Row sums are the Fine numbers (A000957). Column 2 yield the Fine numbers (A000957).

Examples

			T(5,3)=2 because we have UUUDDD|UUDD and UUDUDD|UUDD, where U=(1,1), D=(1,-1) (first return is shown by a vertical bar).
Triangle begins:
   1;
   0,  2;
   1,  0,  5;
   2,  2,  0, 14;
   6,  4,  5,  0, 42;
  18, 12, 10, 14,  0, 132;
		

Crossrefs

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1): f:=n->3*sum(binomial(2*n-2*j,n),j=0..floor(n/2))-binomial(2*n+2,n+1): for n from 2 to 12 do seq(c(k-1)*f(n-k),k=2..n) od; # yields sequence in triangular form
  • Mathematica
    f[n_]:= 3*Sum[Binomial[2*n-2*j, n], {j,0,Floor[n/2]}] - Binomial[2*n+2, n +1]; Table[CatalanNumber[k-1]*f[n-k], {n,2,12}, {k,2,n}] (* G. C. Greubel, Apr 06 2019 *)
  • PARI
    {f(n) = 3*sum(j=0, floor(n/2), binomial(2*n-2*j, n)) - binomial(2*n+2, n+1)};
    for(n=2,12, for(k=2,n, print1((binomial(2*(k-1),k)/(k-1))*f(n-k), ", "))) \\ G. C. Greubel, Apr 06 2019
    
  • Sage
    @CachedFunction
    def f(n):
      return 3*sum(binomial(2*n-2*j, n) for j in (0..floor(n/2))) - binomial(2*n+2, n+1)
    def T(n,k): return catalan_number(k-1)*f(n-k)
    [[T(n,k) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Apr 06 2019

Formula

T(n,n) = Catalan(n-1) (A000108).
Sum_{k=2..n} k*T(n,k) = 2*A014301(n).
T(n, k) = Catalan(k-1)*f(n-k), for 2<=k<=n, where Catalan(n) are the Catalan numbers (A000108) and f(n) = 3*Sum_{j=0..floor(n/2)} ( binomial(2n-2j, n) ) - binomial(2n+2, n+1) (the Fine numbers, A000957).
G.f.: (2*(1+x-t*x) +sqrt(1-4*x) -sqrt(1-4*t*x))/(1 +2*x +sqrt(1-4*x)) -1.

Extensions

Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013

A143950 Triangle read by rows: T(n,k) is the number of Dyck n-paths containing k even-length ascents (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 2, 12, 20, 10, 30, 61, 36, 5, 79, 182, 133, 35, 213, 547, 488, 168, 14, 584, 1668, 1728, 756, 126, 1628, 5116, 6020, 3240, 750, 42, 4600, 15752, 20812, 13200, 3960, 462, 13138, 48709, 71376, 52030, 19360, 3267, 132, 37871, 151164
Offset: 0

Views

Author

Emeric Deutsch, Oct 05 2008

Keywords

Comments

Row n contains 1 + floor(n/2) entries.
Row sums are the Catalan numbers (A000108).
T(n,0) = A101785(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A014301(n).
For the Dyck path statistic "number of odd-length ascents" see A096793.

Examples

			T(4,1)=7 because we have UDUD(UU)DD, UD(UU)DDUD, UD(UU)DUDD, (UU)DDUDUD, (UU)DUDDUD, (UU)DUDUDD and (UUUU)DDDD (the even-length ascents are shown between parentheses).
Triangle starts:
   1;
   1;
   1,  1;
   2,  3;
   5,  7,  2;
  12, 20, 10;
  30, 61, 36,  5;
		

Crossrefs

Programs

  • Maple
    eq:=G=1+(1+s*z*G)*z*G/(1-z^2*G^2): G:=RootOf(eq,G): Gser:=simplify(series(G,z =0,16)): for n from 0 to 13 do P[n]:=sort(expand(coeff(Gser,z,n))) end do: for n from 0 to 13 do seq(coeff(P[n],s,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f. G=G(s,z) satisfies G = 1 + zG(1 + szG)/(1 - z^2*G^2).
The trivariate g.f. H=H(t,s,z), where t (s) marks odd-length (even-length) ascents satisfies H = 1 + zH(t+szH)/(1-z^2*H^2).
Previous Showing 11-20 of 22 results. Next