cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A230723 Number of non-equivalent ways to choose three points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 1, 6, 25, 87, 238, 575, 1228, 2425, 4446, 7734, 12806, 20422, 31444, 47072, 68639, 97929, 136893, 188061, 254170, 338679, 445297, 578616, 743524, 945968, 1192243, 1489894, 1846869, 2272575, 2776880, 3371335, 4068016, 4880921, 5824640, 6915942, 8172258, 9613470
Offset: 1

Views

Author

Heinrich Ludwig, Oct 28 2013

Keywords

Examples

			for n = 3 there are the following a(3) = 6 choices of 3 points (=X) (rotations and reflections ignored):
    X         .         .         X         .         X
   . .       X X       . .       X X       . X       X .
  X . X     . X .     X X X     . . .     X . X     . X .
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,1,6,25,87,238,575,1228,2425,4446,7734,12806},40] (* Harvey P. Dale, Oct 24 2020 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 + B + C)/288
where
B = 27*n^2 + 3*n - 9 if n odd
B = 48*n otherwise
and
C = -32 if n == 1 (mod 3)
C = 0 otherwise
G.f.: x^2*(1 + 3*x + 7*x^2 + 19*x^3 + 16*x^4 + 12*x^5 + x^6 + 2*x^7 - x^8)/((1-x^3) * (1-x^2)^3 * (1-x)^3). - Ralf Stephan, Nov 03 2013

A242279 Number of inequivalent (mod D_4) ways four checkers can be placed on an n X n board.

Original entry on oeis.org

1, 23, 252, 1666, 7509, 26865, 79920, 209096, 491425, 1064575, 2150076, 4104738, 7458437, 13005041, 21857984, 35598880, 56353185, 87019191, 131364700, 194364050, 282314901, 403316353, 567402672, 787201416, 1078078209, 1459020095, 1952782300, 2587048786, 3394568325
Offset: 2

Views

Author

Heinrich Ludwig, May 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5), {x, 0, 20}], x] (* Vaclav Kotesovec, May 10 2014 *)
    LinearRecurrence[{4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1},{0,0,1,23,252,1666,7509,26865,79920,209096,491425,1064575,2150076,4104738},40] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = (n^8 - 6*n^6 + 40*n^4 - 48*n^3 + 16*n^2 + IF(MOD(n, 2) = 1)*(14*n^4 - 48*n^3 + 34*n^2 - 3))/192.
G.f.: x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5). - Vaclav Kotesovec, May 10 2014
a(n) = A054772(n, 4), n >= 2. - Wolfdieter Lang, Oct 03 2016

A242358 Number of inequivalent (mod D_4) ways five checkers can be placed on an n X n board.

Original entry on oeis.org

23, 567, 6814, 47358, 239511, 954226, 3207212, 9414828, 24862239, 60136329, 135311658, 286229762, 574460495, 1101240084, 2028333848, 3605765688, 6211552455, 10402472811, 16984387958, 27099325638, 42342870823, 64905898662, 97761436356, 144885584740, 211543443215
Offset: 3

Views

Author

Heinrich Ludwig, May 11 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6), {x, 0, 20}], x],3] (* Vaclav Kotesovec, May 11 2014 *)

Formula

a(n) = (n^10 - 10*n^8 + 35*n^6 + 52*n^5 - 210*n^4 + 140*n^3 - 56*n^2 + 48*n + IF(MOD(n, 2) = 1)*(52*n^5 - 145*n^4 + 140*n^3 - 80*n^2 + 48*n - 15))/960.
G.f.: x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6). - Vaclav Kotesovec, May 11 2014
a(n) = A054772(n, 5), n >=3. - Wolfdieter Lang, Oct 03 2016

A242709 Nonequivalent ways to place two different markers (e.g., a pair of Go stones, black and white) on an n X n grid.

Original entry on oeis.org

0, 2, 12, 33, 85, 165, 315, 518, 846, 1260, 1870, 2607, 3627, 4823, 6405, 8220, 10540, 13158, 16416, 20045, 24465, 29337, 35167, 41538, 49050, 57200, 66690, 76923, 88711, 101355, 115785, 131192, 148632, 167178, 188020, 210105, 234765, 260813, 289731, 320190
Offset: 1

Views

Author

James Stein, May 21 2014

Keywords

Comments

We say two placements are equivalent if one can be obtained from the other by rotating or reflecting the grid.
The formula was derived by categorizing and counting grid cells into four exclusive categories: central cell (if any); other diagonal cells, other horizontal and vertical midline cells (if any), and all others (in eight triangular regions) (if any); then determining for each category, how many ways a white stone could be placed in each category, given the category in which the black stone was placed prior. The sequence was verified by another program which generated all positions, removed reflections and rotations, and tallied the residue.

Crossrefs

Cf. A014409 (with indistinguishable checkers)

Programs

  • Magma
    [n*(n^3 + n*3^(n mod 2) - 2*2^(n mod 2))/8: n in [1..50]]; // Wesley Ivan Hurt, May 21 2014
  • Maple
    A242709:=n->n*(n^3 + n*3^(n mod 2) - 2*2^(n mod 2))/8; seq(A242709(n), n=1..50); # Wesley Ivan Hurt, May 21 2014
  • Mathematica
    f[n_] := If[OddQ[n], (n^3 + 3 n - 4), (n^3 + n - 2)] n/8;
    Table[f[n], {n, 1, 40}]
  • PARI
    concat(0, Vec(-x^2*(x^5+x^4+7*x^3+5*x^2+8*x+2)/((x-1)^5*(x+1)^3) + O(x^100))) \\ Colin Barker, May 21 2014
    

Formula

For odd n, a(n) = n*(n^3 + 3*n - 4)/8.
For even n, a(n) = n*(n^3 + n - 2)/8.
G.f.: -x^2*(x^5+x^4+7*x^3+5*x^2+8*x+2) / ((x-1)^5*(x+1)^3). - Colin Barker, May 21 2014
a(n) = n*(n^3 + n*3^(n mod 2) - 2*2^(n mod 2))/8. - Wesley Ivan Hurt, May 21 2014

A296999 Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 1, 17, 226, 1550, 7221, 26120, 78484, 206242, 486640, 1056377, 2137506, 4085167, 7430276, 12964014, 21801632, 35520743, 56249658, 86880957, 131186720, 194133425, 282024809, 402949496, 566950056, 786640454, 1077397347, 1458190435, 1951789266, 2585856152, 3393157995
Offset: 1

Views

Author

Heinrich Ludwig, Jan 21 2018

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A296998.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Programs

  • Mathematica
    Array[(#^8 - 6 #^6 - 12 #^5 + 64 #^4 + 8 #^3 - 136 #^2 + Boole[OddQ@ #] (14 #^4 - 96 #^3 + 162 #^2 - 92 # + 93))/192 + Boole[Mod[#, 6] == 2] #/6 + Boole[Mod[#, 4] == 2] #/4 + Boole[Mod[#, 6] == 5] (# + 1)/6 &, 30] (* Michael De Vlieger, Jan 21 2018 *)

Formula

a(n) = (n^8 - 6*n^6 - 12*n^5 + 64*n^4 + 8*n^3 - 136*n^2 + (n == 1 (mod 2))*(14*n^4 - 96*n^3 + 162*n^2 - 92*n + 93))/192 + (n == 2 (mod 6))*n/6 + (n == 2 (mod 4))*n/4 + (n == 5 (mod 6))*(n + 1)/6.
a(n) = (n^8 - 6*n^6 - 12*n^5)/192 + b(n) + c(n), where
b(n) = (64*n^4 + 8*n^3 - 136*n^2)/192 for n even,
b(n) = (78*n^4 - 88*n^3 + 26*n^2 - 92*n + 93)/192 for n odd,
c(n) = 0 for n == 0, 1, 3, 4, 7, 9 (mod 12),
c(n) = n/4 for n == 6, 10 (mod 12),
c(n) = n/6 for n == 8 (mod 12),
c(n) = 5/12*n for n == 2 (mod 12),
c(n) = (n + 1)/6 for n == 5, 11 (mod 12).
Conjectures from Colin Barker, Jan 21 2018: (Start)
G.f.: x^2*(1 + 14*x + 176*x^2 + 893*x^3 + 2861*x^4 + 6847*x^5 + 12704*x^6 + 20412*x^7 + 27052*x^8 + 33142*x^9 + 33910*x^10 + 33289*x^11 + 26586*x^12 + 20709*x^13 + 12212*x^14 + 7178*x^15 + 2639*x^16 + 1094*x^17 + 134*x^18 + 68*x^19 - 3*x^20 + 2*x^21) / ((1 - x)^9*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 4*a(n-4) - 4*a(n-5) + 5*a(n-6) + a(n-7) - 5*a(n-8) + 6*a(n-9) - 10*a(n-10) + 8*a(n-11) - 8*a(n-13) + 10*a(n-14) - 6*a(n-15) + 5*a(n-16) - a(n-17) - 5*a(n-18) + 4*a(n-19) - 4*a(n-20) + 4*a(n-21) + a(n-22) - 3*a(n-23) + a(n-24) for n>24.
(End)

A173799 Partial sums of A019318.

Original entry on oeis.org

1, 3, 19, 271, 7085, 251429, 10997806, 564316854, 33175912910, 2196968168590, 161790768056642, 13114202824936638, 1160158996141467678, 111226473580172327222, 11486922450679555836573
Offset: 1

Views

Author

Jonathan Vos Post, Feb 25 2010

Keywords

Comments

Partial sums of number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same.The subsequence of primes in this partial sum (unexpectedly dense at first) begins: 3, 19, 271, 251429, no more through a(20) yet 4 of the first 5 values after a(1).

Examples

			a(6) = 1 + 2 + 16 + 252 + 6814 + 244344 = 251429 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A019318(i) = SUM[i=1..n] {number of inequivalent ways of choosing i squares from an i X i board, considering rotations and reflections to be the same}.
Previous Showing 21-26 of 26 results.