cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A193666 F(2) odd Fib. numbers, F(3) even Fib. numbers, F(4) odd Fib. numbers..., F(n) = A000045(n), a(n) < a(n+1).

Original entry on oeis.org

1, 2, 8, 13, 21, 55, 144, 610, 2584, 10946, 46368, 75025, 121393, 317811, 514229, 1346269, 2178309, 5702887, 9227465, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288
Offset: 1

Views

Author

Ctibor O. Zizka, Aug 08 2011

Keywords

Examples

			Taking (F(2)=) 1 odd Fib. number gives a(1)=1.
Then taking F(3)=2 even Fib. numbers starting with 2 gives a(2)=2, a(3)=8.
Then taking F(4)=3 odd Fib. numbers starting with 13 gives a(4)=13, a(5)=21, a(6)=55.
Then taking F(5)=5 even Fib. numbers starting with 144 gives a(7)=144, a(8)=610, a(9)=2584, a(10)=10946, a(11)=46368, etc...
		

Crossrefs

A225799 a(n) = Sum_{k=0..n} binomial(n,k) * 10^(n-k) * Fibonacci(n+k).

Original entry on oeis.org

0, 11, 143, 3058, 55341, 1052755, 19717984, 371084087, 6973353387, 131101759514, 2464418392865, 46327530894271, 870879506447808, 16371134451297043, 307750614069672631, 5785211638097121890, 108752568228856901349, 2044371455527726003547, 38430858858805840293152
Offset: 0

Views

Author

John Molokach, Jul 27 2013

Keywords

Comments

This sequence is part of a family of Fibonacci-like sequences, where:
Sum_{k=0..n} binomial(n,k)*m^(n-k)*Fibonacci(n+k) produces a sequence whose terms are divisible by (m+1); m>=1.
A recurrence relation for a(n) (m not equal to zero) is:
a(n) = (m+3)*a(n-1) + (m^2+m-1)*a(n-2); a(0)=0, a(1)=m+1.
Notable values of m include:
m = 1: Fibonacci(3n),
m = 0: Fibonacci(2n) (using recurrence relation only - the sum above is undefined for m=0),
m = -1: the zero sequence,
m = -2: (-1)*Fibonacci(n), or A152163(n+2).
For any value of m, the sequence gives a(n*k) divisible by a(n); n>=1, k>=1, m not equal to -1 (zero is not divisible by zero).
Equivalent sequences are given by: Sum_{k=0..n} binomial(n,k) * (m+1)^k * Fibonacci(k).
When these sequences are divided by m+1, we obtain the family of sequences A057088, A015553, A087567, A087579, A087584, A087603, and so on.
Another interesting value of m, m = -3, gives a(2n-1)= -2 * 5^(n-1); a(2n)=0.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*10^(n - k)*Fibonacci[n + k], {k, 0, n}], {n, 0, 25}]
    FullSimplify[Table[((13 + 11 Sqrt[5])^n - (13 - 11 Sqrt[5])^n)/(2^n Sqrt[5]), {n, 0, 25}]]
    LinearRecurrence[{13,109},{0,11},30] (* Harvey P. Dale, Jul 31 2018 *)

Formula

a(n) = ((13 + 11*sqrt(5))^n - (13 - 11*sqrt(5))^n)/(2^n*sqrt(5)).
a(n) = 13*a(n-1) + 109*a(n-2); a(0)=0, a(1)=11.
G.f.: 11*x*/(1 - 13*x - 109*x^2). - Corrected by Georg Fischer, May 10 2019

A272123 a(n) = Fibonacci(3n) - Fibonacci(2n).

Original entry on oeis.org

0, 1, 5, 26, 123, 555, 2440, 10569, 45381, 193834, 825275, 3506867, 14883984, 63124593, 267596485, 1134071130, 4805348667, 20359308187, 86252640920, 365396207993, 1547906421765, 6557202405546, 27777188626555, 117667194149091, 498449204352288
Offset: 0

Views

Author

Peter M. Chema, Apr 21 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>,
             <1|1|-12|7>>^n. <<0, 1, 5, 26>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 21 2016
  • Mathematica
    Table[Fibonacci[3n] - Fibonacci[2n], {n, 0, 25}] (* Robert Price, Apr 21 2016 *)
  • PARI
    a(n) = fibonacci(3*n) - fibonacci(2*n); \\ Michel Marcus, Apr 21 2016

Formula

a(n) = A014445(n) - A001906(n).
G.f.: -x*(3*x^2-2*x+1)/((x^2-3*x+1)*(x^2+4*x-1)). - Alois P. Heinz, Apr 21 2016
E.g.f.: (exp(-(sqrt(5)-2)*x)*(exp(2*sqrt(5)*x) + exp((sqrt(5)-1)*x/2) - exp((3*sqrt(5)-1)x/2) - 1))/sqrt(5). - Ilya Gutkovskiy, Apr 22 2016
Previous Showing 41-43 of 43 results.