cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A099692 Consider the family of multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 23, 220, 3016, 55011, 1265824, 35496711, 1183686987, 46072834777, 2062557088117, 104926356851165, 6004962409831577, 383331023991407286, 27094756978689827593, 2107021273883402908850, 179261681391054814324774, 16602830645109035036038335
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1,1,2,2,2,2,...; EnrichedGnSeq defined in A098620.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014500. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099696 Consider the family of multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 25, 244, 3380, 62133, 1440382, 40673705, 1364815169, 53415511305, 2402797049419, 122751622204827, 7051227704802797, 451598420376965588, 32013004761567761223, 2495936511077175475140, 212840593118800653411004, 19753575434503894710824531
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099700 Consider the family of multigraphs enriched by the species of simple graphs. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 29, 330, 5438, 128211, 4808964, 378829853, 77137284917, 36854103598061, 36864364745783295, 74684573193253556537, 304187997559381840229969, 2484431769481244742219110666, 40639512967159110848931023115111, 1330529956364528398902155692019721596
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A006125 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A006125. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A099704 Consider the family of multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 2, 24, 776, 79840, 35397440, 69619053504, 564929183555840, 18464894708236907776, 2418517115222622481308160, 1267747370909677813160722947072, 2658511777246500251150215101758228480, 22300872810108738542496498718468714032205824
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGnSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021

A099708 Consider the family of multigraphs enriched by the species of endofunctions. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 6, 60, 854, 16029, 378871, 10926690, 375538541, 15097900582, 699359781567, 36859422340308, 2187121403805853, 144804645827958839, 10615679263174481480, 856040905847508506792, 75495130803739278866508, 7244702305184037575057831, 753093536414613689614872227
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000312 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={1/(1 + lambertw(-x + O(x*x^n)))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000312. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A099712 Consider the family of multigraphs enriched by the species of arborescences. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 30, 338, 5169, 101251, 2446806, 71043973, 2429762734, 96364601877, 4375603494478, 225044659552381, 12990629618136191, 834981228656630494, 59346659738963806022, 4635924974380060251228, 395864230878802130389079, 36773114396103232927777067
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000169 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={-lambertw(-x + O(x*x^n))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and R(x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A099716 Consider the family of multigraphs enriched by the species of trees. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 3, 18, 170, 2244, 38686, 834594, 21874433, 681399298, 24797467947, 1039645748808, 49632586028650, 2671404673776080, 160726892084432840, 10729582290405547592, 789572236551678855603, 63682341168165082629698, 5600777517339868668401105
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000272 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={my(w=lambertw(-x + O(x*x^n))); 1 - w - w^2/2}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000272. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A020562 Number of cyclic multigraphs on n labeled edges (without loops).

Original entry on oeis.org

1, 1, 3, 17, 152, 1933, 32608, 695657, 18148533, 564860131, 20581455139, 864802010595, 41392831046804, 2233799248861031, 134737655762330602, 9015762313899965851, 664889968074287179739
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

Crossrefs

Cf. A014500.

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*A014500(k). - Sean A. Irvine, Apr 25 2019

A192516 Number of line graphs on [1,...,n].

Original entry on oeis.org

1, 1, 2, 8, 62, 739, 11660, 229003, 5487341, 157413957, 5310060277, 207442849742, 9266622204859, 468316344074444, 26534795158872607, 1672482335988644162, 116473621430584439236, 8908899406447047324336, 744489132650874081005467
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2011

Keywords

Crossrefs

Cf. A014500.

Formula

E.g.f. = exp(-x^3/6-x^4/6-x^5/8-x^6/48)*U(x), where U(x) is the e.g.f. for A014500.
Previous Showing 11-19 of 19 results.