A099702
Consider the family of directed multigraphs enriched by the species of simple graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 256, 5719, 173446, 6768075, 328288840, 19468007553, 1458080017522, 183476204746761, 87209577493989776, 154656821805639801687, 617619828457724835488214, 5008102331929281541386123923, 81618549234469098721106601012472, 2666950050438611111026601803629686849
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A006125 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099706
Consider the family of directed multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 4, 84, 3568, 305712, 87782720, 144600947392, 1139235294403328, 37012349010095737088, 4840037457225169875031040, 2535930555678883610642223895552, 5317274645187046706095607711946092544, 44602319906972740832371696997145322907873280
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A002416 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
EnrichedGdlSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021
A099710
Consider the family of directed multigraphs enriched by the species of endofunctions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 21, 372, 9503, 323528, 13976119, 740471952, 46918236113, 3486842393336, 299252510858253, 29285226572514608, 3233515108614711055, 399237909648934968160, 54699907257463871118015, 8261287679602024304387776, 1367355850924129919137226337, 246745297507913180076213875232
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A099714
Consider the family of directed multigraphs enriched by the species of arborescences. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 258, 5771, 174528, 6770119, 324895980, 18781627193, 1281239711000, 101465766593553, 9204346831406488, 945843113150930899, 109072242262950463552, 14001689466624210245831, 1986950788160317182000976, 309800790825415866952825137, 52786928631190620809803203872
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A099718
Consider the family of directed multigraphs enriched by the species of trees. Sequence gives number of those multigraphs with n labeled loops and edges.
Original entry on oeis.org
1, 2, 15, 207, 4274, 120698, 4408714, 200482089, 11035845002, 719691942986, 54661283926338, 4768412660292713, 472309503983879356, 52604316569196875434, 6533611563916740388476, 898472724512273277951811, 135941600045496082012663932, 22505828691354514668620263242
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A020565
Number of cyclic oriented multigraphs on n labeled arcs (with loops).
Original entry on oeis.org
1, 2, 15, 205, 4202, 118096, 4300364, 195155304, 10727473182, 698874420944, 53040545101942, 4624423933685370, 457851029540848580, 50977215595819988320, 6329927203532081983976, 870296461701522595081624, 131659595370255359745290076
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
A020565 := proc(n)
add((-1)^(n-k)*combinat[stirling1](n,k)*A014507(k),k=0..n) ;
end proc:
seq(A020565(n),n=0..10) ; # R. J. Mathar, Apr 30 2017
-
b[n_] := Sum[StirlingS1[n, k]*BellB[2*k], {k, 0, n}];
a[n_] := Sum[(-1)^(n-k)*StirlingS1[n, k]*b[k], {k, 0, n}];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jan 21 2018, after Vladeta Jovovic *)
A192666
E.g.f. satisfies: A(x) = exp(-1)*Sum_{n>=0} (1 + x*A(x))^(n^2)/n!.
Original entry on oeis.org
1, 2, 21, 444, 14415, 637268, 35822203, 2450234160, 197807272289, 18431380399184, 1948783220129813, 230702141895062720, 30251527782113610991, 4355262112839582661824, 683368350046603022039867, 116136704024677305164141056
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 21*x^2/2! + 444*x^3/3! + 14415*x^4/4! +...
where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) = e.g.f. of A014507:
G(x) = 1 + 2*x + 13*x^2/2! + 162*x^3/3! + 3075*x^4/4! + 80978*x^5/5! +...
-
/* A(x) = 1/e*Sum_{n>=0}(1+x*A(x))^(n^2)/n! (requires precision): */
{a(n)=local(A=1+x);for(i=1,n,A=exp(-1)*sum(m=0,3*n+10,(1+x*A +x*O(x^n))^(m^2)/m!));polcoeff(round(serlaplace(A+x*O(x^n))),n)}
-
/* E.g.f. Series_Reversion(x/G(x))/x; G(x) = e.g.f. of A014507: */
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{A014507(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))}
{a(n)=local(G=sum(m=0,n,A014507(m)*x^m/m!)+x*O(x^n));n!*polcoeff(serreverse(x/G)/x,n)}
A265267
E.g.f.: exp(-2) * Sum_{n>=0} 2^n * (1+x)^(n^2) / n!.
Original entry on oeis.org
1, 6, 88, 2160, 76336, 3594112, 214575872, 15695861760, 1371486918144, 140382841170944, 16572993648603136, 2228162239340027904, 337576082591565651968, 57121976918741964259328, 10713284121614206013898752, 2212342319434677836830015488, 500118162321472987555560620032, 123128345425943590420826294059008, 32864579386892803455158341264736256
Offset: 0
E.g.f.: A(x) = 1 + 6*x + 88*x^2/2! + 2160*x^3/3! + 76336*x^4/4! + 3594112*x^5/5! + 214575872*x^6/6! + 15695861760*x^7/7! + 1371486918144*x^8/8! +...
where
A(x)*exp(2) = 1 + 2*(1+x) + 2^2*(1+x)^4/2! + 2^3*(1+x)^9/3! + 2^4*(1+x)^16/4! + 2^5*(1+x)^25/5! + 2^6*(1+x)^36/6! + 2^7*(1+x)^49/7! + 2^8*(1+x)^64/8! +...
Comments