A085603
(2n)^(2n) + 1.
Original entry on oeis.org
2, 5, 257, 46657, 16777217, 10000000001, 8916100448257, 11112006825558017, 18446744073709551617, 39346408075296537575425, 104857600000000000000000001
Offset: 0
A128446
Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.
Original entry on oeis.org
1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241
Offset: 2
-
a[n_] := Module[{p = Prime[n]}, ((2^(p-1) - 1)^(2^(p-1) - 1) + 1)/(2^(p-1)*(2^p-1))]; Array[a, 3, 2] (* Amiram Eldar, Jul 17 2025 *)
A180341
a(n) = k is the smallest number such that n is the number of distinct primes dividing k^k + 1.
Original entry on oeis.org
0, 3, 5, 9, 13, 11, 18, 23, 40, 30, 27, 60, 35, 45, 91, 69, 98, 63, 119
Offset: 1
a(6) = 11 because the 6 distinct primes dividing 11^11 + 1 = 285311670612 are
{2, 3, 23, 89, 199, 58367}.
Comments