A180578
The Wiener index of the Dutch windmill graph D(6,n) (n>=1).
Original entry on oeis.org
27, 144, 351, 648, 1035, 1512, 2079, 2736, 3483, 4320, 5247, 6264, 7371, 8568, 9855, 11232, 12699, 14256, 15903, 17640, 19467, 21384, 23391, 25488, 27675, 29952, 32319, 34776, 37323, 39960, 42687, 45504, 48411, 51408, 54495, 57672, 60939, 64296, 67743, 71280, 74907
Offset: 1
a(1)=27 because in D(6,1)=C_6 we have 6 distances equal to 1, 6 distances equal to 2, and 3 di stances equal to 3.
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60, 1996, pp. 959-969.
- Eric Weisstein's World of Mathematics, Dutch Windmill Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A180579
The Wiener index of the Dutch windmill graph D(5,n) (n>=1).
Original entry on oeis.org
15, 78, 189, 348, 555, 810, 1113, 1464, 1863, 2310, 2805, 3348, 3939, 4578, 5265, 6000, 6783, 7614, 8493, 9420, 10395, 11418, 12489, 13608, 14775, 15990, 17253, 18564, 19923, 21330, 22785, 24288, 25839, 27438, 29085, 30780, 32523, 34314, 36153, 38040, 39975, 41958, 43989
Offset: 1
a(1)=15 because in D(5,1)=C_5 we have 5 distances equal to 1 and 5 distances equal to 2.
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60, 1996, pp. 959-969.
- Eric Weisstein's World of Mathematics, Dutch Windmill Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
seq(3*n*(8*n-3), n = 1 .. 40);
-
Table[3n(8n-3),{n,40}] (* or *) LinearRecurrence[{3,-3,1},{15,78,189},40] (* Harvey P. Dale, May 01 2023 *)
-
a(n)=3*n*(8*n-3) \\ Charles R Greathouse IV, Jun 17 2017
A180867
Square array read by antidiagonals: T(m,n) is the Wiener index of the Dutch windmill graph D(m,n) (m>=3, n>=1).
Original entry on oeis.org
3, 8, 14, 15, 40, 33, 27, 78, 96, 60, 42, 144, 189, 176, 95, 64, 228, 351, 348, 280, 138, 90, 352, 558, 648, 555, 408, 189, 125, 500, 864, 1032, 1035, 810, 560, 248, 165, 700, 1230, 1600, 1650, 1512, 1113, 736, 315, 216, 930, 1725, 2280, 2560, 2412, 2079, 1464
Offset: 3
Square array starts:
3, 14, 33, 60, 95, ...
8, 40, 96, 176, 280, ...
15, 78, 189, 348, 555, ...
27, 144, 351, 648, 1035, ...
-
T := proc (m, n) if `mod`(m, 2) = 1 then (1/8)*n*(m^2-1)*(2*m*n-m-2*n+2) else (1/8)*n*m^2*(2*m*n-m-2*n+2) end if end proc: for n from 3 to 12 do seq(T(n+1-j, j), j = 1 .. n-2) end do; # yields sequence in triangular form
Typos in Wiener polynomial information corrected by
Emeric Deutsch, Sep 30 2010
A270704
Even 14-gonal (or tetradecagonal) numbers.
Original entry on oeis.org
0, 14, 76, 186, 344, 550, 804, 1106, 1456, 1854, 2300, 2794, 3336, 3926, 4564, 5250, 5984, 6766, 7596, 8474, 9400, 10374, 11396, 12466, 13584, 14750, 15964, 17226, 18536, 19894, 21300, 22754, 24256, 25806, 27404, 29050, 30744, 32486, 34276, 36114, 38000
Offset: 0
-
LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41]
Table[2 n (12 n - 5), {n, 0, 40}]
PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
-
concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ Michel Marcus, Mar 22 2016
Comments