cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A115976 Numbers k that divide 2^(k-2) + 1.

Original entry on oeis.org

1, 3, 49737, 717027, 9723611, 21335267, 32390921, 38999627, 43091897, 86071337, 101848553, 102361457, 228911411, 302948067, 370219467, 393664027, 455781089, 483464027, 1040406177, 1272206987, 2371678553, 2571052241, 2648052857, 3054713937, 3597613307, 3782971499, 3917903851, 4005163577, 5419912241
Offset: 1

Views

Author

Max Alekseyev, Mar 15 2006

Keywords

Comments

Some larger terms: 4465786944074559659, 1440261542571735083956640176981881665928575750093930787551969

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ PowerMod[2, 2n - 3, 2n - 1] == 2n - 2, AppendTo[lst, 2n - 1]], {n, 10^9}]; lst (* Robert G. Wilson v, Apr 04 2006 *)

Extensions

More terms from Robert G. Wilson v, Apr 04 2006
Terms a(24) onward from Max Alekseyev, Feb 03 2015
b-file corrected and extended by Max Alekseyev, Oct 27 2018

A342320 Integers k such that Euler(k, 1) is an integer multiple of Bernoulli(k + 1, 1).

Original entry on oeis.org

0, 1, 5, 17, 41, 53, 125, 161, 293, 341, 377, 485, 881, 1025, 1133, 1313, 1457, 1805, 2057, 2393, 2645, 3077, 3401, 3941, 4373, 5333, 5417, 6173, 6497, 7181, 7937, 9197, 9233, 10205, 11825, 12641, 13121, 14153, 14405, 16001, 16253, 16757, 18521, 19493, 21545
Offset: 0

Views

Author

Peter Luschny, Mar 24 2021

Keywords

Examples

			Let E(n) = Euler(n, 1) and B(n) = Bernoulli(n, 1).
2*E(0)  = 4*B(1) = 2;
2*E(1)  = 6*B(2) = 1;
2*E(5)  = 42*B(6) = 1;
2*E(17) = 58254*B(18) = 3202291;
2*E(41) = 418861572486*B(42) = 352552873457246307069012458671.
		

Crossrefs

a(n) = A015942(n-1)-1 for n>=2, (a(n)+1)/2 = A014945(n) for n>=1.
a(n) = A014741(n+1) - 1. - Vaclav Kotesovec, Mar 24 2021
Cf. A341759 (subsequence of primes), A198631/A006519 (Euler), A164555/A027642 (Bernoulli).

Programs

  • Mathematica
    Join[{0}, Select[Range[1000], BernoulliB[#+1, 1] != 0 && IntegerQ[EulerE[#, 1]/BernoulliB[#+1, 1]] &]] (* Vaclav Kotesovec, Mar 24 2021 *)
    Select[Range[100000], IntegerQ[(2*(-1 + 2^#))/#] & ] - 1 (* Vaclav Kotesovec, Mar 24 2021 *)
    L342320 := Select[Range[0, 10000], Divisible[2^(# + 2) - 2, # + 1] &];
    A342320[n_] := L342320[[n + 1]] (* Peter Luschny, Apr 10 2021 *)

Formula

Numbers k such that k + 1 divides 2^(k + 2) - 2. - Vaclav Kotesovec, Mar 24 2021

A125227 A014741(n)/6 for n>2.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 49, 57, 63, 81, 147, 171, 189, 219, 243, 301, 343, 399, 441, 513, 567, 657, 729, 889, 903, 1029, 1083, 1197, 1323, 1533, 1539, 1701, 1971, 2107, 2187, 2359, 2401, 2667, 2709, 2793, 3087, 3249, 3591, 3969, 4161, 4401, 4599, 4617, 5103, 5913
Offset: 3

Views

Author

Alexander Adamchuk, Jan 15 2007

Keywords

Comments

A014741(n) is divisible by 6 for n>2.
All powers of 3 are terms. All powers of 7 are terms. The prime divisors of terms of this sequence (for n up to 10^6) in order of their first appearance are 3, 7, 19, 73, 43, 127, 337, 163, 379, 571, 5419, 487, 2593, 439, 1459, 431, 883.
The sequence is multiplicative in the sense that if two numbers k and m are terms, then k*m is too.

Examples

			a(3) = A014741(3)/6 = 6/6 = 1.
a(4) = A014741(4)/6 = 18/6 = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3,6000], PowerMod[2,#+1,# ]==2&]/6

Formula

a(n) = A014741(n)/6 = A014945(n-1)/3. - Max Alekseyev, Nov 14 2012

A323203 "Primitive" numbers k such that k divides 4^k - 1.

Original entry on oeis.org

1, 3, 21, 147, 171, 657, 903, 1029, 1197, 2667, 3249, 4599, 6321, 7077, 7203, 8379, 12483, 13203, 18669, 22743, 32193, 38829, 44247, 47961, 49539, 50421, 51471, 58653, 61731, 71631, 87381, 92421, 97641, 113799, 114681, 118341, 130683, 152019, 159201, 197757
Offset: 1

Views

Author

Bernard Schott, Jan 07 2019

Keywords

Comments

In the comments of A014945, Charles R. Greathouse writes "this sequence is closed under multiplication". So, here, the terms are only the "primitive" integers which satisfy the definition and are not the product of two or more previous numbers of the sequence. This sequence is a subsequence of A014945.
Also numbers k in A014945 such that no divisors d > 1 of k exist where d and k/d are in A014945. - David A. Corneth, Jan 11 2019
Following an observation of David A. Corneth, yes, a(n) is divisible by 3 for n > 1, there is a proof by Robert Israel in A014945. - Bernard Schott, Jan 25 2019

Examples

			3 is a term because 3 * 21 = 4^3 - 1.
63 divides 4^63 - 1, but 63 is not a term because 63 = 3 * 21 with 3 which divides 4^3 - 1, and 21 which divides 4^21 - 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local d;
      if 4 &^ n - 1 mod n <> 0 then return false fi;
      for d in select(t -> t > 1 and t^2 <= n, numtheory:-divisors(n)) do
        if 4 &^ d - 1 mod d = 0 and 4 &^ (n/d) - 1 mod (n/d) = 0 then return false fi;
      od;
    true
    end proc:
    select(filter, [$1..200000]); # Robert Israel, Jan 24 2019
  • PARI
    is(n) = my(d=divisors(n)); if(Mod(4,n)^n != 1, return(0)); for(i = 2, (#d - 1) >> 1 + 1, if(Mod(4,d[i]) ^ d[i] == 1 && Mod(4, n/d[i]) ^ (n/d[i])==1, return(0))); 1
    first(n) = n = max(n, 2); my(res = vector(n), t=1); res[1] = 1;forstep(i = 3, oo, 3, if(is(i), t++; res[t] = i; if(t==n, return(res)))) \\ David A. Corneth, Jan 11 2019

Extensions

More terms (using b-file for A014945) from Jon E. Schoenfield, Jan 11 2019
Terms verified by Jon E. Schoenfield and David A. Corneth, Jan 12 2019

A014962 Odd numbers k that divide 25^k - 1.

Original entry on oeis.org

1, 3, 9, 21, 27, 63, 81, 93, 147, 171, 189, 243, 279, 441, 513, 567, 609, 651, 729, 837, 903, 1029, 1197, 1323, 1539, 1701, 1827, 1953, 2187, 2511, 2667, 2709, 2883, 2943, 3087, 3249, 3591, 3969, 4263, 4401, 4557, 4617, 5103, 5301, 5481, 5859, 6321
Offset: 1

Views

Author

Keywords

Comments

Also, numbers k such that k divides s(k), where s(1)=1, s(j) = s(j-1) + j*25^(j-1).
Equivalently, numbers k that divide ((24*k - 1)*25^k + 1) / 24^2 (cf. A014943).

Crossrefs

Programs

  • Maple
    select(t -> 25 &^ t - 1 mod t = 0, [seq(i,i=1..10^4,2)]); # Robert Israel, Oct 04 2020

Extensions

Edited by Max Alekseyev, Nov 16 2019

A015942 Positive integers n such that n | (2^n + n/2 - 1).

Original entry on oeis.org

6, 18, 42, 54, 126, 162, 294, 342, 378, 486, 882, 1026, 1134, 1314, 1458, 1806, 2058, 2394, 2646, 3078, 3402, 3942, 4374, 5334, 5418, 6174, 6498, 7182, 7938, 9198, 9234, 10206, 11826, 12642, 13122, 14154, 14406, 16002, 16254, 16758
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A015945.

Programs

  • Python
    A015942_list = [n for n in range(2,10**6,2) if pow(2,n,n) == n//2+1] # Chai Wah Wu, Mar 25 2021

Formula

a(n) = 2 * A014945(n). [Max Alekseyev, Aug 04 2011]
Previous Showing 21-26 of 26 results.