cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 137 results. Next

A110968 a(n) is the starting position of the first run of n ones in A014963.

Original entry on oeis.org

1, 14, 20, 33, 54, 1025, 90, 513, 140, 536870913, 200, 144115188075855860, 294, 65522, 1832, 8193, 1070, 147573952589676412910, 888, 524289, 1130, 549755813889, 4178, 17179869185, 2478, 16385, 2972, 131073, 1332, 34359738338, 5592, 18014398509481952, 8468
Offset: 1

Views

Author

Franz Vrabec, Sep 27 2005

Keywords

Comments

Probably a(n) exists for every n in N.
If n = 2*k, then a(n) - 1 or a(n) + n is of the form 2^e. - Jinyuan Wang, Mar 21 2020

Examples

			a(3) = 20 because the first run of 3 ones in A014963 begins at position 20.
		

Crossrefs

Cf. A014963.

Programs

  • PARI
    a(n) = if(n%2, my(c=0); for(k=1, oo, if(isprimepower(k), if(c==n, return(k-n), c=0), c++)), my(m=1); for(k=1, oo, m*=2; if(isprimepower(m-n-1) && sum(i=m-n, m-1, isprimepower(i))==0, return(m-n)); if(isprimepower(m+n+1) && sum(i=m+1, m+n, isprimepower(i))==0, return(m+1)))); \\ Jinyuan Wang, Mar 21 2020

A383293 Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)).

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 2, 1, 5, 1, 1, 1, 7, 1, 1, 2, 1, 1, 11, 1, 3, 1, 5, 1, 1, 1, 13, 1, 1, 2, 1, 17, 1, 1, 1, 19, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 31, 1, 1, 2, 1, 1, 37, 1, 1, 1, 1, 1, 1, 41, 1, 3, 1, 1, 1, 1, 43, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 53
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2025

Keywords

Crossrefs

Cf. A014963, A064413, A383294 (positions of terms > 1).
Cf. also A265576.

A139553 Triangle read by rows: T(n,k) = if n>=4*k and n<4*k*A014963(k) then k else 1; T(n,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Apr 27 2008

Keywords

Comments

Row products give A139554.

Examples

			Row products of the triangle are:
1 = 1
1*1 = 1
1*1*1 = 1
1*1*1*1 = 1
1*1*1*1*1 = 1
1*1*1*1*1*1 = 1
1*1*1*1*1*1*1 = 1
1*1*1*1*1*1*1*1 = 1
1*1*2*1*1*1*1*1*1 = 2
		

Crossrefs

Programs

  • Excel
    =if(and(row()-1>=(column()-1)*4;row()-1 < A014963(k-1)*(column()-1)*4);column()-1;1)
    
  • PARI
    up_to = 23220; \\ binomial(215+1,2)
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); }; \\ From A014963 by Charles R Greathouse IV, Jun 10 2011
    A139553tr(n, k) = if(0==k,1,if((n>=(4*k))&&(n<(4*k*A014963(k))),k,1));
    A139553list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A139553tr(n-1,k-1))); (v); };
    v139553 = A139553list(up_to);
    A139553(n) = v139553[1+n]; \\ Antti Karttunen, Jan 03 2019

Extensions

Typo in the definition corrected by Antti Karttunen, Jan 03 2019

A140580 a(n) = (n^2)/A048671(n), = n*A014963(n) = A140579 * [1, 2, 3, ...].

Original entry on oeis.org

1, 4, 9, 8, 25, 6, 49, 16, 27, 10, 121, 12, 169, 14, 15, 32, 289, 18, 361, 20, 21, 22, 529, 24, 125, 26, 81, 28, 841, 30, 961, 64, 33, 34, 35, 36, 1369, 38, 39, 40, 1681, 42, 1849, 44, 45, 46, 2209, 48, 343, 50, 51, 52, 2809, 54, 55, 56, 57, 58, 3481, 60, 3721, 62, 63
Offset: 1

Views

Author

Gary W. Adamson, May 17 2008

Keywords

Comments

a(n) gives the last row of columns in A133233. - Mats Granvik, Jun 07 2008

Examples

			a(9) = 27 = 81/3 where 9^2 = 81 and A048671(9) = 3.
a(9) = 27 = 9*A014963(n) = 9*3.
		

Crossrefs

Extensions

Corrected and extended by Mats Granvik, Jun 07 2008

A253141 If n is a prime power, then a(n) = lambda(tau(n)) = A014963(A000005(n)); otherwise, a(n) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Since A253139(n) = Product_{d|n} a(d), A253139 is a divisibility sequence.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			2 is a prime number, i.e., a prime power with 2 divisors; a(2) = A014963(2) = 2.
6 = 2*3 is not a prime power; a(6) = 1.
8 = 2^3 is a prime power with 4 divisors; a(8) = A014963(4) = 2.
32 = 2^5 is a prime power with 6 divisors; a(32) = A014963(6) = 1.
		

Crossrefs

Programs

A306694 a(n) is the denominator of log(A014963(n))/log(n) if n > 1 and a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Mats Granvik, Mar 05 2019

Keywords

Comments

Log(A112624(n)) is the inverse Möbius transform of log(a(n)).

Crossrefs

Programs

  • Maple
    with(numtheory): pexp := n -> ifactors(n)[2][1][2]:
    a := n -> if nops(factorset(n)) = 1 then pexp(n) else 1 fi:
    seq(a(n), n=1..101); # Peter Luschny, Mar 19 2019
  • Mathematica
    Table[Denominator[FullSimplify[MangoldtLambda[n]/Log[n]]], {n, 1, 101}]
  • PARI
    A306694(n) = if((n=isprimepower(n))>0,n,1); \\ Antti Karttunen, Nov 17 2019
  • Sage
    def a(n):
        F = n.factor()
        return 1 if len(F) != 1 else F[0][1]
    print([a(n) for n in (1..101)]) # Peter Luschny, Mar 18 2019
    

Formula

If n is a prime power (in the sense of A246655) then a(n) is the exponent of this prime and otherwise a(n) is 1. - Peter Luschny, Mar 18 2019
Dirichlet generating function: zeta(s) + Sum_{n>=1} n*primezeta((n + 1)*s). - Mats Granvik, Mar 24 2019

Extensions

Data section extended up to term a(121) by Antti Karttunen, Nov 17 2019

A369010 Exponential of Mangoldt function M(n) applied to primorial base exp-function: a(n) = A014963(A276086(n)).

Original entry on oeis.org

1, 2, 3, 1, 3, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 14 2024

Keywords

Comments

Also LCM-transform of A276086, because A276086 has the S-property explained in the comments of A368900.

Crossrefs

Cf. A014963, A060735 (positions of terms > 1), A276086, A368900.

Programs

  • PARI
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A369010(n) = A014963(A276086(n));
    
  • PARI
    up_to = 510511; \\ = 1+A002110(7);
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    v369010 = LCMtransform(vector(up_to,n,A276086(n-1)));
    A369010(n) = v369010[1+n];

Formula

a(n) = A014963(A276086(n)).
For n > 0, a(n) = lcm {1..A276086(n)} / lcm {1..A276086(n-1)}.

A380118 a(n) = Sum_{k=1..n} (A014963(k) - A061397(k)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 4, 6, 9, 10, 10, 11, 11, 12, 13, 15, 15, 16, 16, 17, 18, 19, 19, 20, 25, 26, 29, 30, 30, 31, 31, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 45, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 61, 62, 63, 65, 66, 67, 67, 68, 69, 70
Offset: 1

Views

Author

Peter Luschny, Jan 30 2025

Keywords

Crossrefs

Programs

  • Maple
    pSum := L -> ListTools:-PartialSums(L): h := n -> n/A048671(n) - n*A010051(n):
    aList := upto -> pSum([seq(h(k), k = 1..upto)]): aList(70);
  • Mathematica
    Accumulate[Table[Exp[MangoldtLambda[n]] - If[PrimeQ[n], n, 0] , {n, 1, 70}]]

Formula

a(n) = A072107(n) - A034387(n). - Amiram Eldar, Jan 30 2025

A139549 Triangle read by rows: T(n,k) = if n>=2*k and n<2*k*A014963(k-1) then k else 1 T(n,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Apr 27 2008

Keywords

Comments

Row products give A139550.

Examples

			Row products of the triangle are:
1 = 1
1*1 = 1
1*1*1 = 1
1*1*1*1 = 1
1*1*2*1*1 = 2
1*1*2*1*1*1 = 2
1*1*2*3*1*1*1 = 6
1*1*2*3*1*1*1*1 = 6
1*1*1*3*4*1*1*1*1 = 12
		

Crossrefs

Programs

  • Excel
    =if(and(row()-1>=(column()-1)*2;row()-1 < A014963(k-1)*(column()-1)*2);column()-1;1)

A139551 Triangle read by rows: T(n,k) = if n>=3*k and n<3*k*A014963(k-1) then k else 1 T(n,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Apr 27 2008

Keywords

Comments

Row products give A139552.

Examples

			Row products of the triangle are:
1 = 1
1*1 = 1
1*1*1 = 1
1*1*1*1 = 1
1*1*1*1*1 = 1
1*1*1*1*1*1 = 1
1*1*2*1*1*1*1 = 2
1*1*2*1*1*1*1*1 = 2
1*1*2*1*1*1*1*1*1 = 2
		

Crossrefs

Programs

  • Excel
    =if(and(row()-1>=(column()-1)*3;row()-1 < A014963(k-1)*(column()-1)*3);column()-1;1)
Previous Showing 11-20 of 137 results. Next