cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A347486 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 3.

Original entry on oeis.org

1, 1, 4, 1, 13, 52, 1, 40, 130, 520, 2080, 1, 121, 1210, 4840, 15730, 62920, 251680, 1, 364, 11011, 33880, 44044, 440440, 1431430, 1761760, 5725720, 22902880, 91611520, 1, 1093, 99463, 925771, 397852, 12035023, 37030840, 120350230, 48140092, 481400920, 1564552990
Offset: 1

Views

Author

Álvar Ibeas, Sep 03 2021

Keywords

Comments

Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order.
For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_3)^n with dimension increments (e_1,...,e_r).

Examples

			The number of subspace chains 0 < V_1 < V_2 < (F_3)^3 is 52 = T(3, (1, 1, 1)). There are 13 = A022167(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 4 = A022167(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
  k:  1   2    3    4     5     6      7
      ----------------------------------
n=1:  1
n=2:  1   4
n=3:  1  13   52
n=4:  1  40  130  520  2080
n=5:  1 121 1210 4840 15730 62920 251680
		

References

  • R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.

Crossrefs

Cf. A036038 (q = 1), A022167, A015001 (last entry in each row).

Formula

T(n, (n)) = 1. T(n, L) = A022167(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.

A015015 q-factorial numbers for q=-3.

Original entry on oeis.org

1, 1, -2, -14, 280, 17080, -3108560, -1700382320, 2788627004800, 13722833490620800, -202576467988544249600, -8971504037808659182035200, 1191954026463258458925196672000, 475090227821752019816863814722432000, -568085339196037403679856371543830284544000, -2037851067068183667490280132124059680133919488000
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A384454.
Cf. A015001.

Programs

  • Magma
    [n le 1 select 1 else ((-3)^n - 1)*Self(n-1)/(-4): n in [1..18]]; // Vincenzo Librandi, Oct 26 2012
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==(((-3)^n - 1) * a[n-1])/(-4)}, a, {n, 18}] (* Vincenzo Librandi, Oct 26 2012 *)

Formula

a(n) = Product_{k=1..n} ((-3)^k - 1)/(-3 - 1).
a(1) = 1, a(n) = ((-3)^n - 1)*a(n-1)/(-4). - Vincenzo Librandi, Oct 26 2012
a(n) ~ (-1)^floor(n/2) * c * 3^(n*(n+1)/2) / 4^n, where c = Product_{k>=1} (1 - 1/(-3)^k) = 1.2176479365615020492... . - Amiram Eldar, Aug 09 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, May 30 2025
Previous Showing 11-12 of 12 results.