cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A290759 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - k*x/(1 - k^2*x/(1 - k^3*x/(1 - k^4*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 14, 1, 1, 1, 5, 43, 171, 42, 1, 1, 1, 6, 89, 1252, 3113, 132, 1, 1, 1, 7, 161, 5885, 104098, 106419, 429, 1, 1, 1, 8, 265, 20466, 1518897, 25511272, 7035649, 1430, 1, 1, 1, 9, 407, 57799, 12833546, 1558435125, 18649337311, 915028347, 4862, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2017

Keywords

Comments

This is the transpose of the array in A090182.

Examples

			G.f. of column k: A_k(x) = 1 + x + (k + 1)*x^2 + (k^3 + k^2 + 2*k + 1)*x^3 + (k^6 + k^5 + 2*k^4 + 3*k^3 + 3*k^2 + 3*k + 1)*x^4 + ...
Square array begins:
  1,   1,     1,       1,        1,         1,  ...
  1,   1,     1,       1,        1,         1,  ...
  1,   2,     3,       4,        5,         6,  ...
  1,   5,    17,      43,       89,       161,  ...
  1,  14,   171,    1252,     5885,     20466,  ...
  1,  42,  3113,  104098,  1518897,  12833546,  ...
		

Crossrefs

Main diagonal gives A290777.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(j, k)*A(n-j-1, k)*k^j, j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 10 2017
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x/(1 + ContinuedFractionK[-k^i x, 1, {i, 1, n}])), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def A(n, k): return 1 if n==0 else sum(A(j, k)*A(n - j - 1, k)*k**j for j in range(n))
    for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 10 2017, after Maple code

Formula

G.f. of column k: 1/(1 - x/(1 - k*x/(1 - k^2*x/(1 - k^3*x/(1 - k^4*x/(1 - ...)))))), a continued fraction.

A090182 Triangle T(n,k), 0 <= k <= n, composed of k-Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 17, 4, 1, 1, 1, 42, 171, 43, 5, 1, 1, 1, 132, 3113, 1252, 89, 6, 1, 1, 1, 429, 106419, 104098, 5885, 161, 7, 1, 1, 1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1, 1, 4862, 915028347, 18649337311, 1558435125, 12833546, 57799, 407, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2004, Oct 16 2008

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    1,       1;
  1,    2,       1,        1;
  1,    5,       3,        1,       1;
  1,   14,      17,        4,       1,     1;
  1,   42,     171,       43,       5,     1,   1;
  1,  132,    3113,     1252,      89,     6,   1, 1;
  1,  429,  106419,   104098,    5885,   161,   7, 1, 1;
  1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1;
This sequence formatted as a square array:
  1, 1, 1,   1,     1,        1,           1,               1, ...
  1, 1, 2,   5,    14,       42,         132,             429, ...
  1, 1, 3,  17,   171,     3113,      106419,         7035649, ...
  1, 1, 4,  43,  1252,   104098,    25511272,     18649337311, ...
  1, 1, 5,  89,  5885,  1518897,  1558435125,   6386478643785, ...
  1, 1, 6, 161, 20466, 12833546, 40130703276, 627122621447281, ...
		

Crossrefs

The column sequences (without leading zeros) are A000012, A000108 (Catalan), A015083, A015084, A015085, A015086, A015089, A015091, A015092, A015093, A015095, A015096 for k=0..11.
T(2n,n) gives A290777.
Cf. A290759.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k=n, 1, add(
          T(j+k, k)*T(n-j-1, k)*k^j, j=0..n-k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Aug 10 2017
  • Mathematica
    nmax = 10; col[k_] := col[k] = Module[{A}, A[] = 0; Do[A[x] = Normal[1/(1 - x*A[k*x]) + O[x]^(nmax-k+1)], {nmax-k+1}]; CoefficientList[A[x], x]];
    T[n_, k_] := col[k][[n-k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, using g.f. given for column sequences *)

A385527 E.g.f. A(x) satisfies A(x) = exp(x*A(4*x)).

Original entry on oeis.org

1, 1, 9, 457, 118961, 152894961, 940318147705, 26967408304580857, 3534888068831469959649, 2084993641133372935803249505, 5465706581663919414225671125834601, 63043356313898446097762231466174924913065, 3173076775252515207774429654590479617164788572049
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 1; Do[A[x] = E^(x*A[4*x]) + O[x]^j // Normal, {j, 1, nmax + 1}]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 02 2025 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A385527(n)
      A(4, n)
    end

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * 4^k * binomial(n-1,k) * a(k) * a(n-1-k).
a(n) ~ c * n! * 2^(n*(n-1)), where c = 1.216702003338638031273833889488221691367428313263423339843... - Vaclav Kotesovec, Jul 02 2025

A348902 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(4*x)).

Original entry on oeis.org

1, 1, 9, 305, 39705, 20412737, 41846783913, 342892875489361, 11236600170415809849, 1472826135905484728387681, 772188014962631262957890704329, 1619397184353040716422147490531778929, 13584491414647344530078887450781292845554521
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 12; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 12}]

Formula

a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(2*k+1) * a(k) * a(n-k-1).
a(n) ~ c * 2^(n^2), where c = 2^(7/8) / EllipticTheta(2, 0, 1/sqrt(2)) = 0.6091497110662286155211146043057245512950999410185846745870491125003511... (same constant as in A165941). - Vaclav Kotesovec, Nov 03 2021, updated Apr 21 2024

A348859 G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(4*x))).

Original entry on oeis.org

1, 2, 11, 204, 13701, 3550838, 3646912991, 14948746703872, 244965160945456921, 16054771878797715999594, 4208710286900635084866205491, 4413165224136772109314051383922356, 18510169791808150609141704979384516863021, 310549172324407121253872529077196811473762678750
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 13; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[4 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = 1 + Sum[4^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]

Formula

a(n) = 1 + Sum_{k=0..n-1} 4^k * a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)), where c = 3.399782064170449155365557063612838469541502782488369640092639686931819... - Vaclav Kotesovec, Nov 02 2021

A348877 G.f. A(x) satisfies: A(x) = 1 / (1 - x - x * A(4*x)).

Original entry on oeis.org

1, 2, 12, 232, 15792, 4108192, 4223439552, 17316156716672, 283777228606348032, 18598759772257600748032, 4875627680189345535622228992, 5112485673116229482189477259405312, 21443339558695300334256395183459423465472, 359759625310995318218730673236935427042834358272
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 13; A[] = 0; Do[A[x] = 1/(1 - x - x A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[4^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} 4^k * a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)), where c = 2*Product_{j>=1} (4^j+1)/(4^j-1) = 3.938520707336538863894387393934531340132379924622409970534801850699757421... - Vaclav Kotesovec, Nov 03 2021

A348880 G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(4*x)).

Original entry on oeis.org

1, 1, 2, 7, 45, 540, 12645, 578965, 52968266, 9592378291, 3490570329073, 2521575506955308, 3665174976025818601, 10583587128179171478201, 61512603105342112799632050, 710375545029057279438117199695, 16513584476995892580457952423234565
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[4^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-2} 4^k * a(k) * a(n-k-2).
a(n) ~ c * 2^(n*(n-2)/2), where c = 3.18049189724646501466385558274654521200715578089919192312230814532162... - Vaclav Kotesovec, Nov 03 2021

A348862 G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(4*x))).

Original entry on oeis.org

1, 0, 1, 16, 1041, 267552, 274242081, 1123570105392, 18409696460431921, 1206516278059945211200, 316282209730469497179053121, 331646250633753603369328903503952, 1391025527264722227030105092707830630481, 23337537123459992903665202300959789335795178848
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 13; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[4 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = (-1)^n + Sum[4^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]

Formula

a(n) = (-1)^n + Sum_{k=0..n-1} 4^k * a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)), where c = 0.2554910592341818819974992745952574870516320592891123415106817713508566833... - Vaclav Kotesovec, Nov 02 2021

A352008 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 4^k * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 5, 9, 29, 65, 437, 953, 3981, 10097, 49829, 123241, 516349, 1400737, 10203285, 24698905, 111642477, 304787665, 1704790917, 4392726473, 19951366877, 56296655617, 336083829621, 878995865721, 3974885167949, 11362790432305, 60789762148453, 165051865924137
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[4^k a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 28}]
    nmax = 28; A[] = 0; Do[A[x] = 1/(1 - x A[4 x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(4*x^2)).

A376097 a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1)^4 * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 17, 1410, 364019, 228282823, 296324235500, 712075198644414, 2918094100584013255, 19151474626728425949663, 191553141880332262049655201, 2804913258838830873001491036584, 58168297154586087400230338311689652, 1661461159115675581245556180230933084340
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(k + 1)^4 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
    nmax = 13; A[] = 0; Do[A[x] = 1 + x A[x]^2 + 15 x^2 A[x] A'[x] + 25 x^3 A[x] A''[x] + 10 x^4 A[x] A'''[x] + x^5 A[x] A''''[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x)^2 + 15 * x^2 * A(x) * A'(x) + 25 * x^3 * A(x) * A''(x) + 10 * x^4 * A(x) * A'''(x) + x^5 * A(x) * A''''(x).
Previous Showing 21-30 of 32 results. Next