A015380
Gaussian binomial coefficient [ n,9 ] for q=-8.
Original entry on oeis.org
1, -119304647, 16266970069380217, -2179059787976052939572615, 292539874786707389459461268654713, -39262839136506665155883080645146897495431, 5269789166381879647128952074697436662720144919161
Offset: 9
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13:
A015371,
A015375,
A015376,
A015377,
A015378,
A015379,
A015381,
A015382,
A015383,
A015384,
A015385. -
Vincenzo Librandi, Nov 04 2012
-
r:=9; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 9, -8],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,9,-8) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
A015381
Gaussian binomial coefficient [ n,9 ] for q=-9.
Original entry on oeis.org
1, -348678440, 136773736379522605, -52916360230556551635386480, 20504007291105533368839949866598015, -7943538006665671364765186721016327317109448, 3077495169782617972230910362141435994555138110002155
Offset: 9
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13:
A015371,
A015375,
A015376,
A015377,
A015378,
A015379,
A015380,
A015382,
A015383,
A015384,
A015385. -
Vincenzo Librandi, Nov 04 2012
-
r:=9; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 9, -9],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
[gaussian_binomial(n,9,-9) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
A015382
Gaussian binomial coefficient [ n,9 ] for q=-10.
Original entry on oeis.org
1, -909090909, 918273645463728191, -917356289173636281073462809, 917448033977125729275307703398447191, -917438859588520669588272049420660231320652809, 917439777028298615325746963688293507886210115870347191
Offset: 9
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13:
A015371,
A015375,
A015376,
A015377,
A015378,
A015379,
A015380,
A015381,
A015383,
A015384,
A015385. -
Vincenzo Librandi, Nov 04 2012
-
r:=9; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 9, -10],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
A015383
Gaussian binomial coefficient [ n,9 ] for q=-11.
Original entry on oeis.org
1, -2161452050, 5139062461110267955, -12108543136400139930131294300, 28553261556033167915025118560778623715, -67326679110860591163925513616845073983121067050, 158752877164012182076561255078472431325233637546101158985
Offset: 9
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13:
A015371,
A015375,
A015376,
A015377,
A015378,
A015379,
A015380,
A015381,
A015382,
A015384,
A015385. -
Vincenzo Librandi, Nov 04 2012
-
r:=9; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 9, -11],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
A015384
Gaussian binomial coefficient [ n,9 ] for q=-12.
Original entry on oeis.org
1, -4762874171, 24747240402737283733, -127616472670861852065241422635, 658504724872263265466971967899949697493, -3397726086395967282512946130260694347212577518123
Offset: 9
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13:
A015371,
A015375,
A015376,
A015377,
A015378,
A015379,
A015380,
A015381,
A015382,
A015383,
A015385.
-
r:=9; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Table[QBinomial[n, 9, -12],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
A015265
Gaussian binomial coefficient [ n,2 ] for q = -13.
Original entry on oeis.org
1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,2] for q=-2,...,-12:
A015249,
A015251,
A015253,
A015255,
A015257 A015258,
A015259,
A015260,
A015261,
A015262,
A015264.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
-
Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
A015286
Gaussian binomial coefficient [ n,3 ] for q = -13.
Original entry on oeis.org
1, -2040, 4508570, -9900819720, 21752862899691, -47790911017216080, 104996653267533662740, -230677643550873536294640, 506798783502833908602716981, -1113436927250681654567602842120
Offset: 3
A015286(7) = 21752862899691 = A015303(7),
A015286(8) = -47790911017216080 = A015321(8),
A015286(9) = 104996653267533662740 = A015337(9). - _M. F. Hasler_, Nov 03 2012
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
Fourth row (r=3) or column (resp. diagonal) in
A015129 (read as square array resp. triangle). -
M. F. Hasler, Nov 03 2012
-
r:=3; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
-
QBinomial[Range[3,15],3,-13] (* Harvey P. Dale, Jun 21 2012 *)
Table[QBinomial[n, 3, -13], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
A015286(n,r=3,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,3,-13) for n in range(3,13)] # Zerinvary Lajos, May 27 2009
A015303
Gaussian binomial coefficient [ n,4 ] for q = -13.
Original entry on oeis.org
1, 26521, 761974851, 21752862899691, 621305270140974342, 17745052029585350965782, 506816536013640476467362442, 14475186854407942097510802411322
Offset: 4
To illustrate the relation qC(n,r)=qC(n,n-r), here with r=4, n=r+1...r+3:
A015303(5) = 26521 = A015000(5),
A015303(6) = 761974851 = A015265(6),
A015303(7) = 21752862899691 = A015286(7).
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. q-integers and Gaussian binomial coefficients [n,r] for q=-13:
A015000,
A015265 (r=2),
A015286 (r=3),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
Fifth row (r=4) or column (resp. diagonal) of
A015129, read as square (resp. triangular) array.
-
Table[QBinomial[n, 4, -13], {n, 4, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
A015303(n,r=4,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,4,-13) for n in range(4,12)] # Zerinvary Lajos, May 27 2009
A015337
Gaussian binomial coefficient [ n,6 ] for q = -13.
Original entry on oeis.org
1, 4482037, 21762709934980, 104996653267533662740, 506816536013640476467362442, 2446300028783605805772822454177234, 11807825441932996339362317150047214843540
Offset: 6
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
Table[QBinomial[n, 6, -13], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)
-
A015337(n,r=6,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,6,-13) for n in range(6,13)] # Zerinvary Lajos, May 27 2009
A015355
Gaussian binomial coefficient [ n,7 ] for q=-13.
Original entry on oeis.org
1, -58266480, 3677897920745140, -230677643550873536294640, 14475186854407942097510802411322, -908294062111964496034866469968025332240
Offset: 7
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
r:=7; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
-
Table[QBinomial[n, 7, -13], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)
-
A015355(n,r=7,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,7,-13) for n in range(7,13)] # Zerinvary Lajos, May 27 2009