cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A190943 a(n) = 8*a(n-1) + 27*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 8, 91, 944, 10009, 105560, 1114723, 11767904, 124240753, 1311659432, 13847775787, 146197010960, 1543466033929, 16295047567352, 172033963454899, 1816237991957696, 19174820948943841, 202436993374408520, 2137216112616751867
Offset: 0

Views

Author

Bruno Berselli, May 24 2011

Keywords

Crossrefs

Cf. A000045, A046717, A015533 (for type of recurrence).
Cf. A015611, A190441 (for type of closed formula).

Programs

  • Magma
    [n le 2 select n-1 else 8*Self(n-1)+27*Self(n-2): n in [1..17]];
    
  • Mathematica
    a = {0, 1}; Do[AppendTo[a, 8 a[[-1]] + 27 a[[-2]]], {18}]; a (* Bruno Berselli, Dec 26 2012 *)
    CoefficientList[Series[x / (1 - 8 x - 27 x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • Maxima
    a[0]:0$ a[1]:1$ a[n]:=8*a[n-1]+27*a[n-2]$ makelist(a[n], n, 0, 17);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-8*x-27*x^2))) \\ G. C. Greubel, Dec 30 2017

Formula

G.f.: x/(1-8*x-27*x^2).
a(n) = ((4+sqrt(43))^n - (4-sqrt(43))^n)/(2*sqrt(43)).

A122120 a(n) = 4*a(n-1) + 9*a(n-2), for n>1, with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 21, 111, 633, 3531, 19821, 111063, 622641, 3490131, 19564293, 109668351, 614752041, 3446023323, 19316861661, 108281656551, 606978381153, 3402448433571, 19072599164661, 106912432560783, 599303122725081
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2006

Keywords

Crossrefs

First differences of A015533.
Binomial transform of A091914.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-4*x-9*x^2) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-4*x-9*x^2), {x, 0, 30}], x] (* G. C. Greubel, Feb 26 2019 *)
    nxt[{a_,b_}]:={b,4b+9a}; NestList[nxt,{1,3},20][[All,1]] (* or *) LinearRecurrence[{4,9},{1,3},30] (* Harvey P. Dale, Oct 06 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-4*x-9*x^2)) \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    ((1-x)/(1-4*x-9*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

a(n) = Sum_{k=0..n} 3^(n-k)*A055380(n,k).
G.f.: (1-x)/(1-4*x-9*x^2).
Limit_{n -> oo} a(n+1)/a(n) = 2 + sqrt(13).
Previous Showing 11-12 of 12 results.