cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A054984 Composite numbers k such that sigma(k + 6!) = sigma(k + 720) = sigma(k) + 720.

Original entry on oeis.org

427, 553, 595, 623, 737, 871, 913, 923, 1199, 1207, 1241, 1507, 1582, 1817, 1848, 2193, 2226, 2337, 2398, 2407, 2553, 2561, 2728, 2758, 2929, 3016, 3115, 3248, 3346, 3502, 3503, 3598, 3705, 3762, 4171, 4293, 4343, 4462, 4587, 4633, 4841, 4867, 4984
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Examples

			553 is a term because sigma(553) + 720 = 640 + 720 = 1360 = sigma(553 + 720) = sigma(1273) = 1 + 19 + 67 + 1273.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], CompositeQ[#] && Differences@ DivisorSigma[1, {#, # + 720}] == {720} &] (* Amiram Eldar, Mar 09 2025 *)
  • PARI
    isok(k) = !isprime(k) && sigma(k + 720) == sigma(k) + 720; \\ Amiram Eldar, Mar 09 2025

A054985 Composite numbers x such that sigma(x+120) = sigma(x)+120.

Original entry on oeis.org

182, 203, 287, 350, 407, 558, 611, 731, 779, 803, 963, 1424, 1643, 2627, 2747, 3431, 3806, 4187, 4223, 5063, 6767, 7946, 8927, 9047, 11904, 12707, 12878, 15794, 18923, 20567, 27263, 31175, 32111, 34427, 43139, 43811, 45854, 50165, 52592, 57479
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

See also A015914, A054799, A033560.

Examples

			a(6)=558, sigma(558)+120=1248+120=1368=sigma(678)=sigma(558+120).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60000],CompositeQ[#]&&DivisorSigma[1,#]+120 == DivisorSigma[ 1,#+120]&] (* Harvey P. Dale, Nov 25 2022 *)
  • PARI
    isok(n) = !isprime(n) && (sigma(n+120) == (sigma(n) + 120)); \\ Michel Marcus, Dec 31 2013

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A063680 Solutions to sigma(k) + 7 = sigma(k+7).

Original entry on oeis.org

74, 531434, 387420482, 2541865828322
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

No other solutions < 4290000000. Sequence A063679 shows how to generate more solutions, but there may be solutions other than those produced by A063679.
No others < 10^17. - Seth A. Troisi, Oct 25 2022
k or k+7 must be a square or twice a square (A028982). See comment in A015886. - Seth A. Troisi, Oct 26 2022
From Jon E. Schoenfield, Oct 26 2022: (Start)
Each of the first 4 terms of the sequence is of the form k = 9^j - 7:
74 = 9^2 - 7,
531434 = 9^6 - 7,
387420482 = 9^9 - 7,
2541865828322 = 9^13 - 7.
The next terms of this form are 9^53 - 7 and 9^82 - 7.
Does the sequence contain any terms that are not of this form?
(End)
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k) + 7 == sigma(k+7); \\ Michel Marcus, Oct 25 2022

Extensions

a(4) from Seth A. Troisi, Oct 24 2022

A054983 Composite numbers n such that sigma(n+24) = sigma(n) + 24.

Original entry on oeis.org

80, 95, 119, 299, 527, 962, 1247, 1479, 1739, 2783, 4307, 4958, 5240, 6015, 7878, 8342, 10379, 11639, 16967, 20687, 21439, 29294, 34547, 36917, 49022, 51959, 54707, 59807, 76127, 97319, 153242, 181427, 203318, 203822, 213419, 363302, 423999, 494882, 582902
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

Examples

			a(1) = 80, sigma(80)+24 = 186+24 = 210 = sigma(80+24) = sigma(104) = 104+52+26+13+8+4+2+1.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=200000},Select[Complement[Range[nn],Prime[Range[ PrimePi[nn]]]], DivisorSigma[1,#+24] == DivisorSigma[1,#]+24&]] (* Harvey P. Dale, Jan 12 2013 *)

A056775 Numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 45, 47, 59, 61, 65, 67, 71, 80, 89, 97, 99, 101, 112, 117, 127, 135, 137, 139, 151, 167, 171, 176, 179, 181, 196, 199, 207, 209, 211, 227, 229, 239, 251, 257, 269, 271, 272, 279, 281, 294, 304, 310, 312, 337, 347, 367, 369, 389
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Prime solutions are in A046133, common with primes in A015917.

Examples

			65 is a term since phi(65) = 48, phi(65+12) = phi(77) = 60 = 48 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],EulerPhi[#]+12==EulerPhi[#+12]&] (* Harvey P. Dale, Jan 21 2013 *)

A056776 Composite numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

45, 65, 80, 99, 112, 117, 135, 171, 176, 196, 207, 209, 272, 279, 294, 304, 310, 312, 369, 406, 429, 477, 496, 531, 592, 656, 657, 711, 752, 801, 909, 927, 944, 981, 1014, 1072, 1078, 1179, 1251, 1359, 1424, 1557, 1611, 1629, 1712, 1719, 1744, 1786, 1791
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

There are common cases with A054902.

Examples

			656 is a term since it is composite and phi(656) = 320, phi(656+12) = phi(668) = 332 = 320 + 12.
657 is a term since it is composite and phi(657) = 432, phi(657+12) = phi(669) = 444 = 432 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1800], CompositeQ[#] && EulerPhi[# + 12] == EulerPhi[#] + 12 &] (* Amiram Eldar, Mar 01 2020 *)

A056777 Composite numbers k such that both phi(k+12) = phi(k) + 12 and sigma(k+12) = sigma(k) + 12.

Original entry on oeis.org

65, 209, 11009, 38009, 680609, 2205209, 3515609, 4347209, 10595009, 12006209, 31979009, 89019209, 169130009, 244766009, 247590209, 258084209, 325622009, 357777209, 377330609, 441630209, 496175609, 640343009, 1006475609
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

It is easy to show that if p, p+2, p+6 and p+8 are all prime (a prime quadruple as defined in A007530, which lists the values of p) with x=p(p+8), x+12=(p+2)(p+6), then x is in the sequence. I conjecture that all members of the sequence are of this form. - Jud McCranie, Oct 11 2000
Numbers so far are all congruent to 65 (mod 72). - Ralf Stephan, Jul 07 2003

Examples

			k = 209 = 11*19, k + 12 = 221 = 13*17, phi(k + 12) = 192 = 180 + 12 = phi(k) + 12, also sigma(221) = 252 = sigma(209) + 12 = 240 + 12.
phi(65) + 12 = 60 = phi(65 + 12), sigma(65) + 12 = 96 = sigma(65 + 12), 65 is composite.
		

Crossrefs

Programs

  • PARI
    isok(n) = !isprime(n) && (sigma(n+12) == sigma(n)+12) && (eulerphi(n+12)==eulerphi(n)+12); \\ Michel Marcus, Jul 14 2017

Extensions

More terms from Jud McCranie, Oct 11 2000
Previous Showing 11-18 of 18 results.