A016932
a(n) = (6*n + 1)^12.
Original entry on oeis.org
1, 13841287201, 23298085122481, 2213314919066161, 59604644775390625, 787662783788549761, 6582952005840035281, 39959630797262576401, 191581231380566414401, 766217865410400390625, 2654348974297586158321, 8182718904632857144561, 22902048046490258711521
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A016921,
A016922,
A016923,
A016924,
A016925,
A016926,
A016927,
A016928,
A016929,
A016930,
A016931.
A174321
Index of the smallest prime greater than (6n+1)^2.
Original entry on oeis.org
1, 16, 40, 73, 115, 163, 220, 284, 358, 435, 520, 610, 706, 812, 924, 1039, 1164, 1295, 1424, 1573, 1716, 1878, 2033, 2191, 2367, 2548, 2730, 2916, 3108, 3303, 3513, 3732, 3946, 4165, 4397, 4628, 4858, 5107, 5357, 5612, 5883, 6148, 6415, 6685, 6961, 7253
Offset: 0
a(0)=1 because prime(1) > (6*0 + 1)^2;
a(1)=16 because prime(16) > (6*1+1)^2 > prime(15);
a(2)=40 because prime(40) > (6*2+1)^2 > prime(39).
A289134
a(n) = 21*n^2 - 33*n + 13.
Original entry on oeis.org
1, 31, 103, 217, 373, 571, 811, 1093, 1417, 1783, 2191, 2641, 3133, 3667, 4243, 4861, 5521, 6223, 6967, 7753, 8581, 9451, 10363, 11317, 12313, 13351, 14431, 15553, 16717, 17923, 19171, 20461, 21793, 23167, 24583, 26041, 27541, 29083, 30667, 32293
Offset: 1
Cf.
A033574 (analog for square tiling, von Neumann neighborhood),
A016922 (analog for square tiling, Moore neighborhood),
A016923 (analog for cubic 3D tiling, Moore neighborhood),
A064762.
-
hexgro[t_]:=7+4*6+5*6*(t-2)+Sum[i*6*7,{i,t-2}]; Table[hexgro[n],{n,40}]
LinearRecurrence[{3,-3,1},{1,31,103},40] (* Harvey P. Dale, Apr 23 2020 *)
-
Vec(x*(1 + 28*x + 13*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jun 28 2017
A347533
Array A(n,k) where A(n,0) = n and A(n,k) = (k*n + 1)^2 - A(n,k-1), n > 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 3, 7, 6, 4, 13, 18, 10, 5, 21, 36, 31, 15, 6, 31, 60, 64, 50, 21, 7, 43, 90, 109, 105, 71, 28, 8, 57, 126, 166, 180, 151, 98, 36, 9, 73, 168, 235, 275, 261, 210, 127, 45, 10, 91, 216, 316, 390, 401, 364, 274, 162, 55, 11, 111, 270, 409, 525, 571, 560, 477, 351, 199, 66
Offset: 1
Array, A(n, k), begins:
1 3 6 10 15 21 28 36 45 ... A000217;
2 7 18 31 50 71 98 127 162 ... A195605;
3 13 36 64 105 151 210 274 351 ...
4 21 60 109 180 261 364 477 612 ...
5 31 90 166 275 401 560 736 945 ...
6 43 126 235 390 571 798 1051 1350 ...
7 57 168 316 525 771 1078 1422 1827 ...
8 73 216 409 680 1001 1400 1849 2376 ...
9 91 270 514 855 1261 1764 2332 2997 ...
Antidiagonals, T(n, k), begin as:
1;
2, 3;
3, 7, 6;
4, 13, 18, 10;
5, 21, 36, 31, 15;
6, 31, 60, 64, 50, 21;
7, 43, 90, 109, 105, 71, 28;
8, 57, 126, 166, 180, 151, 98, 36;
9, 73, 168, 235, 275, 261, 210, 127, 45;
10, 91, 216, 316, 390, 401, 364, 274, 162, 55;
Family of sequences (k*n + 1)^2:
A016754 (k=2),
A016778 (k=3),
A016814 (k=4),
A016862 (k=5),
A016922 (k=6),
A016994 (k=7),
A017078 (k=8),
A017174 (k=9),
A017282 (k=10),
A017402 (k=11),
A017534 (k=12),
A134934 (k=14).
-
A347533:= func< n,k | (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1)) >;
[A347533(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Dec 25 2022
-
A[n_, 0]:= n; A[n_, k_]:= (k*n+1)^2 -A[n,k-1]; Table[Function[n, A[n, k]][m-k+1], {m,0,10}, {k,0,m}]//Flatten (* Michael De Vlieger, Oct 27 2021 *)
-
def A347533(n,k): return (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1))
flatten([[A347533(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Dec 25 2022
Comments