cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A301623 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 5.

Original entry on oeis.org

23, 41, 59, 77, 113, 131, 149, 167, 203, 221, 239, 257, 293, 311, 329, 347, 383, 401, 419, 437, 473, 491, 509, 527, 563, 581, 599, 617, 653, 671, 689, 707, 743, 761, 779, 797, 833, 851, 869, 887, 923, 941, 959, 977, 1013, 1031, 1049, 1067, 1103, 1121
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {23, 41, 59, 77} mod 90 with additive sum sequence 23{+18+18+18+36} {repeat ...}. Includes all primes number > 5 with digital root 5.

Examples

			23+18=41; 41+18=59; 59+18=77; 77+36=113; 113+18=131.
		

Crossrefs

Intersection of A007775 and A017221.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=5); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{23,41,59,77,113},50] (* Harvey P. Dale, Jul 28 2018 *)
  • PARI
    Vec(x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
    

Formula

Numbers == {23, 41, 59, 77} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

A367856 Table T(n,k), read by downward antidiagonals: T(n,k) = floor((3*T(n,k-1)+2)/2) starting with T(n,0) = 3*n.

Original entry on oeis.org

0, 1, 3, 2, 5, 6, 4, 8, 10, 9, 7, 13, 16, 14, 12, 11, 20, 25, 22, 19, 15, 17, 31, 38, 34, 29, 23, 18, 26, 47, 58, 52, 44, 35, 28, 21, 40, 71, 88, 79, 67, 53, 43, 32, 24, 61, 107, 133, 119, 101, 80, 65, 49, 37, 27, 92, 161, 200, 179, 152, 121, 98, 74, 56, 41, 30
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2023

Keywords

Comments

Permutation of nonnegative numbers.

Examples

			Square array starts:
  0,  1,  2,  4,   7,  11,  17,  26,  40,   61, ...
  3,  5,  8, 13,  20,  31,  47,  71, 107,  161, ...
  6, 10, 16, 25,  38,  58,  88, 133, 200,  301, ...
  9, 14, 22, 34,  52,  79, 119, 179, 269,  404, ...
 12, 19, 29, 44,  67, 101, 152, 229, 344,  517, ...
 15, 23, 35, 53,  80, 121, 182, 274, 412,  619, ...
 18, 28, 43, 65,  98, 148, 223, 335, 503,  755, ...
 21, 32, 49, 74, 112, 169, 254, 382, 574,  862, ...
 24, 37, 56, 85, 128, 193, 290, 436, 655,  983, ...
 27, 41, 62, 94, 142, 214, 322, 484, 727, 1091, ...
 ...
		

Crossrefs

Programs

Formula

T(n,0) = 3*n = A008585(n).
T(2*n,1) = 9*n+1 = A017173(n).
T(2*n+1,1) = 9*n+5 = A017221(n).
T(0,k) = A006999(k).
T(2^k+n, k) = 3^(k+1) + T(n, k).

Extensions

More terms from Paolo Xausa, Apr 03 2024

A031904 a(n) = prime(9*n - 4).

Original entry on oeis.org

11, 43, 83, 131, 179, 229, 277, 337, 389, 443, 499, 569, 617, 673, 739, 809, 859, 929, 991, 1049, 1103, 1181, 1237, 1301, 1381, 1451, 1499, 1571, 1621, 1699, 1777, 1861, 1913, 1997, 2063, 2129, 2207, 2273, 2341, 2393, 2467, 2551, 2647
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A017221.

Programs

A309844 Primes of the form n^4 + n^2 + 3.

Original entry on oeis.org

3, 5, 23, 653, 10103, 83813, 160403, 234743, 280373, 1049603, 3420653, 6252503, 11319863, 52207853, 92246423, 146422103, 174913853, 221548343, 442071653, 479807123, 577224653, 607597853, 655385603, 937921253, 1222865933, 1249233683, 1387525253, 1506177293
Offset: 1

Views

Author

Christopher R. Madan, Aug 19 2019

Keywords

Comments

Digital root of all values > 3 is 5, compare A017221.

Crossrefs

Subset of A027753. Subset of A017221.

Programs

  • MATLAB
    a = [];
    for n = 0:1e3
        x = n.^4+n.^2+3;
        if isprime(x); a = [a,x]; end;
    end
    
  • Mathematica
    f[n_] := n^4 + n^2 + 3; Select[f /@ Range[0, 200], PrimeQ] (* Amiram Eldar, Aug 24 2019 *)
  • Python
    from sympy import isprime
    a = []
    for n in range(0,1000):
        x = n**4+n**2+3
        if isprime(x):
            a.append(x)
Previous Showing 21-24 of 24 results.