cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A017681 Numerator of sum of -9th powers of divisors of n.

Original entry on oeis.org

1, 513, 19684, 262657, 1953126, 93499, 40353608, 134480385, 387440173, 500976819, 2357947692, 1292535097, 10604499374, 2587675113, 1423901192, 68853957121, 118587876498, 7361363287, 322687697780, 256501107891, 113474345696, 302406791499, 1801152661464, 24510295355
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 513/512, 19684/19683, 262657/262144, 1953126/1953125, 93499/93312, 40353608/40353607, 134480385/134217728, ...
		

Crossrefs

Cf. A017682 (denominator), A013667, A013668.

Programs

  • Magma
    [Numerator(DivisorSigma(9,n)/n^9): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[1/Divisors[n]^9]],{n,20}] (* Harvey P. Dale, Aug 26 2013 *)
    Table[Numerator[DivisorSigma[9, n]/n^9], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 9)/n^9)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^9*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017682(n) = zeta(9) (A013667).
Dirichlet g.f. of a(n)/A017682(n): zeta(s)*zeta(s+9).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017682(k) = zeta(10) (A013668). (End)

A017682 Denominator of sum of -9th powers of divisors of n.

Original entry on oeis.org

1, 512, 19683, 262144, 1953125, 93312, 40353607, 134217728, 387420489, 500000000, 2357947691, 1289945088, 10604499373, 2582630848, 1423828125, 68719476736, 118587876497, 7346640384, 322687697779
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 513/512, 19684/19683, 262657/262144, 1953126/1953125, 93499/93312, 40353608/40353607, 134480385/134217728, ...
		

Crossrefs

Cf. A017681.

Programs

  • Magma
    [Denominator(DivisorSigma(9,n)/n^9): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Denominator[DivisorSigma[9, n]/n^9], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 9)/n^9)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^9*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018

A017683 Numerator of sum of -10th powers of divisors of n.

Original entry on oeis.org

1, 1025, 59050, 1049601, 9765626, 30263125, 282475250, 1074791425, 3486843451, 200195333, 25937424602, 10329823175, 137858491850, 144768565625, 23066408612, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 5125005407613, 16680163512500, 13292930108525
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
		

Crossrefs

Cf. A017684 (denominator), A013668, A013669.

Programs

  • Magma
    [Numerator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-10]],{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
    Table[Numerator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017684(n) = zeta(10) (A013668).
Dirichlet g.f. of a(n)/A017684(n): zeta(s)*zeta(s+10).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017684(k) = zeta(11) (A013669). (End)

A017684 Denominator of sum of -10th powers of divisors of n.

Original entry on oeis.org

1, 1024, 59049, 1048576, 9765625, 30233088, 282475249, 1073741824, 3486784401, 200000000, 25937424601, 10319560704, 137858491849, 144627327488, 23066015625, 1099511627776, 2015993900449, 3570467226624
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
		

Crossrefs

Cf. A017683.

Programs

  • Magma
    [Denominator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Denominator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 06 2018
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018

A017685 Numerator of sum of -11th powers of divisors of n.

Original entry on oeis.org

1, 2049, 177148, 4196353, 48828126, 30248021, 1977326744, 8594130945, 31381236757, 50024415087, 285311670612, 185843885311, 1792160394038, 506442812307, 2883268288216, 17600780175361, 34271896307634, 21433384705031, 116490258898220, 102450026512239, 350279478046112
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017686 (denominator), A013669, A013670.

Programs

  • Magma
    [Numerator(DivisorSigma(11,n)/n^11): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-11]],{n,20}] (* Harvey P. Dale, Aug 26 2012 *)
    Table[Numerator[DivisorSigma[11, n]/n^11], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 11)/n^11)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017686(n) = zeta(11) (A013669).
Dirichlet g.f. of a(n)/A017686(n): zeta(s)*zeta(s+11).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017686(k) = zeta(12) (A013670). (End)

A017686 Denominator of sum of -11th powers of divisors of n.

Original entry on oeis.org

1, 2048, 177147, 4194304, 48828125, 30233088, 1977326743, 8589934592, 31381059609, 50000000000, 285311670611, 185752092672, 1792160394037, 506195646208, 2883251953125, 17592186044416, 34271896307633
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017685.

Programs

  • Magma
    [Denominator(DivisorSigma(11,n)/n^11): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Denominator[DivisorSigma[-11,Range[20]]] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    vector(20, n, denominator(sigma(n, 11)/n^11)) \\ G. C. Greubel, Nov 06 2018
    

A017687 Numerator of sum of -12th powers of divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 1088658937, 13841287202, 68736258049, 282430067923, 500122072361, 3138428376722, 1486382423891, 23298085122482, 28353876833297, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162, 2048500130460969
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017688 (denominator), A013670, A013671.

Programs

  • Magma
    [Numerator(DivisorSigma(12,n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017688(n) = zeta(12) (A013670).
Dirichlet g.f. of a(n)/A017688(n): zeta(s)*zeta(s+12).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017688(k) = zeta(13) (A013671). (End)

A017688 Denominator of sum of -12th powers of divisors of n.

Original entry on oeis.org

1, 4096, 531441, 16777216, 244140625, 1088391168, 13841287201, 68719476736, 282429536481, 500000000000, 3138428376721, 1486016741376, 23298085122481, 28346956187648, 129746337890625, 281474976710656
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017687.

Programs

  • Magma
    [Denominator(DivisorSigma(12,n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Array[Denominator[Total[Divisors[#]^-12]]&,20] (* Harvey P. Dale, Dec 06 2012 *)
    Table[Denominator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
    

A017689 Numerator of sum of -13th powers of divisors of n.

Original entry on oeis.org

1, 8193, 1594324, 67117057, 1220703126, 1088524711, 96889010408, 549822930945, 2541867422653, 5000610355659, 34522712143932, 26751583696117, 302875106592254, 99226457784093, 648732096885608, 4504149450301441, 9904578032905938, 6941839931265343, 42052983462257060
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017690 (denominator), A013671, A013672.

Programs

  • Magma
    [Numerator(DivisorSigma(13,n)/n^13): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Maple
    A017689 := proc(n)
        numtheory[sigma][-13](n) ;
        numer(%) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    Table[Numerator[DivisorSigma[13, n]/n^13], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 13)/n^13)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017690(n) = zeta(13) (A013671).
Dirichlet g.f. of a(n)/A017690(n): zeta(s)*zeta(s+13).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017690(k) = zeta(14) (A013672). (End)

A017690 Denominator of sum of -13th powers of divisors of n.

Original entry on oeis.org

1, 8192, 1594323, 67108864, 1220703125, 1088391168, 96889010407, 549755813888, 2541865828329, 5000000000000, 34522712143931, 26748301344768, 302875106592253, 99214346656768, 648731689453125
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017689.

Programs

  • Magma
    [Denominator(DivisorSigma(13,n)/n^13): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Denominator[DivisorSigma[13, n]/n^13], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 13)/n^13)) \\ G. C. Greubel, Nov 06 2018
    
Previous Showing 41-50 of 72 results. Next