cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A127839 a(1)=1, a(2)=...=a(5)=0, a(n) = a(n-5) + a(n-4) for n > 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211
Offset: 1

Views

Author

Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007

Keywords

Comments

Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n) = a(n-k) + a(n-k+1) for n > k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.

References

  • S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,1,1},{1,0,0,0,0},70] (* Harvey P. Dale, Mar 19 2012 *)

Formula

Binet-like formula: a(n) = Sum_{i=1...5} (r_i^n)/(4(r_i)^2+5(r_i)) where r_i is a root of x^5=x+1.
G.f.: x*(x^4-1)/(x^5+x^4-1). - Harvey P. Dale, Mar 19 2012
a(n) = A017827(n-6) for n >= 6. - R. J. Mathar, May 09 2013

A243254 Number of compositions of n into parts {3,4,5} when all parts 3,4 and 5 are present.

Original entry on oeis.org

6, 0, 0, 12, 12, 12, 20, 30, 50, 60, 80, 120, 162, 225, 305, 401, 560, 763, 1017, 1365, 1834, 2484, 3328, 4420, 5936, 7943, 10593, 14148, 18828, 25092, 33468, 44517, 59214, 78734, 104698, 139232, 184889, 245532, 326177, 433052, 574841, 762856, 1012219, 1343160
Offset: 12

Views

Author

David Neil McGrath, Jul 30 2014

Keywords

Comments

Compositions of n from the set {3,4,5} that can be partitioned into the equivalence classes [345][34][45][35][3][4][5], where each class is defined by the relation "all elements are present".

Examples

			a(24) = 162 = 42 + 90 + 30: the tuples are (5433333) -> 7!/5! = 42, (554433) -> 6!/2!2!2! = 90, (544443) -> 6!/4! = 30.
		

Crossrefs

Programs

  • Maple
    N:= 100;
    C34:= Vector(N):
    C35:= Vector(N):
    C45:= Vector(N):
    C345:= Vector(N):
    C1:= Vector(N,i -> numboccur([i mod 3, i mod 4, i mod 5],0)):
    C34[3]:= 1: C34[4]:= 1:
    C35[3]:= 1: C35[5]:= 1:
    C45[4]:= 1: C45[5]:= 1:
    C345[3]:= 1: C345[4]:= 1: C345[5]:= 1:
    for n from 6 to N do
      C34[n]:= C34[n-3] + C34[n-4];
      C35[n]:= C35[n-3] + C35[n-5];
      C45[n]:= C45[n-4] + C45[n-5];
      C345[n]:= C345[n-3]+C345[n-4]+C345[n-5];
    od:
    A:= C345 - C34 - C35 - C45 + C1:
    convert(A[12..N],list); # Robert Israel, Aug 18 2014
  • Mathematica
    CoefficientList[Series[x^12*(x^15 + 5*x^14 + 13*x^13 + 24*x^12 + 34*x^11 + 36*x^10 + 24*x^9 - 26*x^7 - 40*x^6 - 36*x^5 - 18*x^4 + 12*x^2 + 12*x +6)/((1 - x)*(x + 1)*(x^2 + 1)*(x^3 + x^2 - 1)*(x^4 + x^3 - 1)*(x^5 + x^3 - 1)*(x^2 + x + 1)*(x^5 + x^4 - 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 02 2014 *)
    Drop[LinearRecurrence[{-2,-2,2,9,16,14,-2,-29,-52,-52,-20,34,82,97,67,7,-53,-84,-77,-43,-4,22,29,23,13,5,1},{0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,12,12,12,20,30,50,60,80,120,162,225,305,401},60],12] (* Harvey P. Dale, Jun 06 2025 *)

Formula

a(n) = A017818(n-1) -A245492(n) -A245487(n) -A245527(n) -A022003(n) -A011765(n) -A112765(n).
G.f.: -(x^15 +5*x^14 +13*x^13 +24*x^12 +34*x^11 +36*x^10 +24*x^9-26*x^7 -40*x^6 -36*x^5 -18*x^4 +12*x^2 +12*x +6) *x^12 /((x-1) *(x+1) *(x^2+1) *(x^3+x^2-1) *(x^4+x^3-1) *(x^5+x^3-1) *(x^2+x+1) *(x^5+x^4-1) *(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jul 30 2014
a(n) = A017818(n) - A017817(n) - A052920(n) - A017827(n) + A079978(n) + A121262(n) + A079998(n). - Robert Israel, Aug 18 2014

A375691 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^3.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 3, 6, 3, 0, 12, 36, 36, 12, 55, 220, 330, 220, 328, 1365, 2730, 2730, 2793, 8841, 21420, 28560, 29172, 62832, 164220, 271320, 314583, 508896, 1265628, 2430480, 3275085, 4642803, 10091664, 21066804, 32555028, 45388200, 85102875
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(3*k,k)/(2*k+1).

A385142 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) with a(1) = a(2) = a(3) = 0, a(4) = 1, and a(5) = 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 15, 22, 35, 64, 129, 265, 529, 1013, 1873, 3394, 6126, 11148, 20552, 38303, 71760, 134408, 250880, 466361, 864339, 1600062, 2963186, 5494247, 10200142, 18952107, 35221440, 65442625, 121544393, 225655617, 418857277, 777451793, 1443184210, 2679343966
Offset: 1

Views

Author

Hung Viet Chu, Jun 19 2025

Keywords

Comments

a(n) is the number of subsets of {4, 8, 12,.., 4*n} that are maximal Schreier and contain 4*n.

Crossrefs

Cf. A017827.

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 1}, {0, 0, 0, 1, 3}, 50] (* Paolo Xausa, Jun 27 2025 *)

Formula

a(n) = Sum_{i=1..floor((n+1)/5)} binomial(n-i-1, 4i-2).
a(n) = A017827(4*n-6), n > 1.
Previous Showing 11-14 of 14 results.