cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A061439 Largest number whose cube has n digits.

Original entry on oeis.org

2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Examples

			a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
		

Crossrefs

a(n) is one more than the corresponding term of A018005. Cf. A061435.

Programs

  • Maple
    Digits := 100:
    A061439 := n->ceil(10^(n/3))-1:
    seq (A061439(n), n=1..40);
  • Mathematica
    t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n,i++]; AppendTo[t,i-1],{n,20}]; t (* Jayanta Basu, May 19 2013 *)

Formula

a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011

A373727 a(n) is the largest number that is the digit sum of an n-digit cube.

Original entry on oeis.org

8, 10, 18, 28, 28, 44, 46, 54, 63, 73, 80, 82, 98, 100, 109, 118, 125, 136, 144, 154, 154, 163, 172, 181, 190, 190, 199, 208, 217, 226, 235, 243, 253, 260, 262, 278
Offset: 1

Views

Author

Zhining Yang, Jun 15 2024

Keywords

Examples

			a(7) = 46 because 46 is the largest digital sum encountered among all 7-digit cubes (attained at 3 cubes: 3869893, 7880599, 8998912).
		

Crossrefs

Other powers: A371728, A373914, A374025, A373994.

Programs

  • C
    /* See links. */
  • Mathematica
    Table[Max@
      Map[Total@IntegerDigits[#^3] &,
       Range[Ceiling@CubeRoot[10^(n - 1)], CubeRoot[10^n - 1]]], {n, 15}]
  • Python
    from sympy import integer_nthroot
    def A373727(n): return max(sum(int(d) for d in str(m**3)) for m in range(1+integer_nthroot(10**(n-1)-1,3)[0],1+integer_nthroot(10**n-1,3)[0])) # Chai Wah Wu, Jun 26 2024
    

A130080 Smallest number whose sixth power has n digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 15, 22, 32, 47, 69, 100, 147, 216, 317, 465, 682, 1000, 1468, 2155, 3163, 4642, 6813, 10000, 14678, 21545, 31623, 46416, 68130, 100000, 146780, 215444, 316228, 464159, 681293, 1000000, 1467800, 2154435, 3162278, 4641589
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2007

Keywords

Comments

Powers of sixth root of 10 rounded up.

Examples

			6^6 = 46656 has five digits, 7^6 = 117649 has six digits, hence a(6) = 7.
		

Crossrefs

Cf. A011557 (powers of 10), A017936 (smallest number whose square has n digits), A018005 (smallest number whose cube has n digits), A018074 (smallest number whose fourth power has n digits), A018143 (smallest number whose fifth power has n digits), A130081 to A130084 (smallest number whose seventh ... tenth power has n digits).

Programs

  • Magma
    [ Ceiling(Root(10^(n-1),6)): n in [1..41] ];
    
  • Mathematica
    Table[(Ceiling[10^((n - 1)/6)]), {n, 1, 100}] (* Vincenzo Librandi, Sep 20 2013 *)
  • Python
    from sympy import integer_nthroot
    def A130080(n):
        a, b = integer_nthroot(10**(n-1),6)
        return a+(not b) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = ceiling(10^((n-1)/6)).

A130084 Smallest number whose tenth power has at least n digits.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 10, 13, 16, 20, 26, 32, 40, 51, 64, 80, 100, 126, 159, 200, 252, 317, 399, 502, 631, 795, 1000, 1259, 1585, 1996, 2512, 3163, 3982, 5012, 6310, 7944, 10000, 12590, 15849, 19953, 25119, 31623, 39811, 50119, 63096, 79433, 100000
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2007

Keywords

Comments

Powers of tenth root of 10 rounded up.

Examples

			3^10 = 59049 has five digits, 4^10 = 1048576 has seven digits, hence a(6) = a(7) = 4.
		

Crossrefs

Cf. A011279, A011557 (powers of 10), A017936 (smallest number whose square has n digits), A018005 (smallest number whose cube has n digits), A018074 (smallest number whose fourth power has n digits), A018143 (smallest number whose fifth power has n digits), A130080 to A130083 (smallest number whose sixth ... ninth power has n digits).

Programs

  • Magma
    [Ceiling(Root(10^(n-1),10)): n in [1..51]];
    
  • Mathematica
    Table[(Ceiling[10^((n - 1)/10)]), {n, 1, 60}] (* Vincenzo Librandi, Sep 20 2013 *)
  • Python
    from sympy import integer_nthroot
    def A130084(n): return (lambda x:x[0]+(not x[1]))(integer_nthroot(10**(n-1),10)) # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ceiling(10^((n-1)/10)).

A130083 Smallest number whose ninth power has at least n digits.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 17, 22, 28, 36, 47, 60, 78, 100, 130, 167, 216, 279, 360, 465, 600, 775, 1000, 1292, 1669, 2155, 2783, 3594, 4642, 5995, 7743, 10000, 12916, 16682, 21545, 27826, 35939, 46416, 59949, 77427, 100000, 129155, 166811, 215444
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2007

Keywords

Comments

Powers of ninth root of 10 rounded up.

Examples

			2^9 = 512 has three digits, 3^9 = 19683 has five digits, hence a(4) = a(5) = 3.
		

Crossrefs

Cf. A011278, A011557 (powers of 10), A017936 (smallest number whose square has n digits), A018005 (smallest number whose cube has n digits), A018074 (smallest number whose fourth power has n digits), A018143 (smallest number whose fifth power has n digits), A130080 to A130084 (smallest number whose sixth ... tenth power has n digits).

Programs

  • Magma
    [ Ceiling(Root(10^(n-1),9)): n in [1..49] ];
    
  • Mathematica
    Table[(Ceiling[10^((n - 1)/9)]), {n, 1, 60}] (* Vincenzo Librandi, Sep 21 2013 *)
  • Python
    from sympy import integer_nthroot
    def A130083(n): return (lambda x:x[0]+(not x[1]))(integer_nthroot(10**(n-1),9)) # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ceiling(10^((n-1)/9)).

A130081 Smallest number whose seventh power has at least n digits.

Original entry on oeis.org

1, 2, 2, 3, 4, 6, 8, 10, 14, 20, 27, 38, 52, 72, 100, 139, 194, 269, 373, 518, 720, 1000, 1390, 1931, 2683, 3728, 5180, 7197, 10000, 13895, 19307, 26827, 37276, 51795, 71969, 100000, 138950, 193070, 268270, 372760, 517948, 719686, 1000000, 1389496
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2007

Keywords

Comments

Powers of seventh root of 10 rounded up.

Examples

			1^7 = 1 has 1 digit, 2^7 = 128 has three digits, hence a(2) = a(3) = 2.
		

Crossrefs

Cf. A011276, A011557 (powers of 10), A017936 (smallest number whose square has n digits), A018005 (smallest number whose cube has n digits), A018074 (smallest number whose fourth power has n digits), A018143 (smallest number whose fifth power has n digits), A130080 to A130084 (smallest number whose sixth ... tenth power has n digits).

Programs

  • Magma
    [Ceiling(Root(10^(n-1),7)): n in [1..44]];
    
  • Mathematica
    Table[(Ceiling[10^((n - 1)/7)]), {n, 1, 60}] (* Vincenzo Librandi, Sep 20 2013 *)
  • Python
    from sympy import integer_nthroot
    def A130081(n): return (lambda x:x[0]+(not x[1]))(integer_nthroot(10**(n-1),7)) # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ceiling(10^((n-1)/7)).

A130082 Smallest number whose eighth power has at least n digits.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 6, 8, 10, 14, 18, 24, 32, 43, 57, 75, 100, 134, 178, 238, 317, 422, 563, 750, 1000, 1334, 1779, 2372, 3163, 4217, 5624, 7499, 10000, 13336, 17783, 23714, 31623, 42170, 56235, 74990, 100000, 133353, 177828, 237138, 316228, 421697
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2007

Keywords

Comments

Powers of eighth root of 10 rounded up.

Examples

			9^8 = 43046721 has eight digits, 10^8 = 100000000 has nine digits, hence a(9) = 10.
		

Crossrefs

Cf. A011277, A011557 (powers of 10), A017936 (smallest number whose square has n digits), A018005 (smallest number whose cube has n digits), A018074 (smallest number whose fourth power has n digits), A018143 (smallest number whose fifth power has n digits), A130080 to A130084 (smallest number whose sixth ... tenth power has n digits).

Programs

  • Magma
    [ Ceiling(Root(10^(n-1),8)): n in [1..46] ];
    
  • Mathematica
    Table[(Ceiling[10^((n - 1)/8)]), {n, 1, 60}] (* Vincenzo Librandi, Sep 20 2013 *)
  • Python
    from sympy import integer_nthroot
    def A130082(n): return (lambda x:x[0]+(not x[1]))(integer_nthroot(10**(n-1),8)) # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ceiling(10^((n-1)/8)).
Previous Showing 21-27 of 27 results.