cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 339 results. Next

A339815 Let x = A019565(2*n); a(n) is the difference between 2-adic valuations of phi(x) and (x-1).

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 1, 0, -3, 2, 2, 0, 2, -3, 4, 0, 2, -2, 4, 2, 0, 4, 4, 2, 2, 4, 1, 1, 4, 4, 6, 0, 4, 4, 6, 4, 4, 6, 5, 4, 2, 6, 6, 4, 6, 4, 8, 4, 6, 4, 8, 6, 3, 8, 8, 6, 6, 8, 6, 5, 8, 8, 10, 0, -1, 2, 2, 0, 2, 1, 4, -2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 4, 3, -2, 4, 4, 6, 2, 4, 2, 6, 4, 1, 6, 6, 4, 3, 6, 6, 4, 6, 5, 8, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Cf. A339816 (indices of terms < 1).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339815(n) = { my(x=A019565(2*n)); valuation(eulerphi(x),2)-valuation(x-1,2); };

Formula

a(n) = A339822(n) - A339814(n).
a(n) = A007814(A000010(A019565(2n))) - A007814(A019565(2n)-1).

A339899 a(n) = gcd(A019565(2n)-1, A000265(phi(A019565(2n)))).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 15, 1, 1, 1, 3, 5, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 27, 1, 1, 1, 1, 5, 3, 1, 1, 1, 81, 1, 1, 1, 3, 1, 1, 1, 9, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339899(n) = { my(x=A019565(2*n)); gcd((x-1),A000265(eulerphi(x))); };

Formula

a(n) = gcd(A339809(2*n), A339971(n)), where A339971(n) = A053575(A019565(2n)).
a(n) = gcd(A339971(n), A339898(n)).
a(n) = A339971(n) / A339901(n).
a(n) = A000265(A049559(A019565(2*n))).

A339973 Numbers k for which A019565(2k)-1 is a multiple of A000265(phi(A019565(2k))).

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 16, 20, 32, 33, 34, 35, 38, 41, 50, 56, 64, 128, 176, 256, 259, 290, 512, 1024, 2048, 2056, 2081, 2089, 2096, 2180, 4096, 4130, 8192, 9218, 16384, 18436, 32768, 65536, 131072, 131140, 262144, 279552, 524288, 524308, 524546, 1048576, 1048736, 2097152, 4194304, 4194352, 4194420, 4196656, 4202499, 8388608
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Numbers k such that A339971(k) divides A339809(2k).
Union of {0}, A000079 and the terms of (1/2)*A048675(A339880(i)), for i >= 1, sorted into ascending order.

Crossrefs

Positions of zeros in A339898, and of ones in A339901.
Cf. A000079 (subsequence).
Cf. also A339816, A339906.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA339971(n) = { my(x=A019565(2*n)); !((x-1)%A000265(eulerphi(x))); };

A351031 a(n) = Product_{d|n, dA019565(A304759(d)).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 6, 6, 12, 2, 18, 2, 2, 36, 90, 2, 180, 2, 180, 6, 4, 2, 810, 12, 10, 180, 30, 2, 180, 2, 9450, 12, 20, 12, 56700, 2, 30, 30, 56700, 2, 420, 2, 12, 1080, 10, 2, 1275750, 2, 120, 60, 30, 2, 31500, 24, 9450, 90, 20, 2, 238140, 2, 4, 2520, 10914750, 60, 84, 2, 420, 30, 31500, 2, 2946982500, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Crossrefs

Cf. A019565, A048673, A289813, A304759, A351030, A351032, A351033 (rgs-transform).
Cf. also A293221.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A351031(n) = { my(m=1); fordiv(n,d,if(dA019565(A304759(d)))); (m); };

A351032 a(n) = Product_{d|n, dA019565(A291759(d)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 24, 1, 6, 1, 8, 1, 12, 1, 8, 3, 6, 1, 480, 1, 2, 1, 72, 1, 120, 1, 16, 3, 2, 3, 480, 1, 2, 1, 32, 1, 216, 1, 120, 5, 6, 1, 13440, 3, 60, 1, 120, 1, 168, 3, 1440, 1, 6, 1, 144000, 1, 10, 3, 32, 1, 1080, 1, 8, 3, 72, 1, 26880, 1, 10, 75, 24, 9, 1080, 1, 128, 7, 10, 1, 86400, 1, 30, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Crossrefs

Cf. A019565, A048673, A289814, A291759, A351030, A351031, A351034 (rgs-transform).
Cf. also A293222.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A351032(n) = { my(m=1); fordiv(n,d,if(dA019565(A291759(d)))); (m); };

A351556 a(n) = gcd(n, A019565(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 7, 15, 1, 1, 3, 1, 5, 1, 11, 1, 1, 1, 1, 3, 7, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 1, 21, 1, 1, 5, 1, 1, 1, 1, 1, 3, 13, 1, 3, 55, 7, 1, 1, 1, 5, 1, 1, 21, 1, 1, 3, 1, 17, 1, 5, 1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 1, 1, 1, 1, 85, 1, 3, 11, 1, 3, 7, 1, 1, 1, 5, 1, 1, 1, 3, 5, 1, 51, 1, 13, 7
Offset: 0

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n, Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 0, 105}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A351556(n) = gcd(n, A019565(n));

Formula

a(n) = gcd(n, A019565(n)) = gcd(A007947(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351558(n)).

A351557 a(n) = gcd(sigma(n), A019565(n)).

Original entry on oeis.org

1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 6, 7, 14, 3, 6, 1, 2, 3, 2, 1, 2, 3, 6, 1, 1, 21, 2, 7, 10, 3, 2, 1, 2, 3, 6, 13, 2, 15, 2, 1, 14, 3, 2, 7, 26, 3, 6, 1, 1, 3, 6, 1, 2, 15, 6, 1, 2, 3, 6, 7, 2, 3, 26, 1, 2, 3, 34, 1, 2, 3, 6, 1, 2, 3, 2, 35, 2, 21, 10, 1, 11, 3, 6, 1, 2, 33, 30, 1, 2, 3, 14, 7, 2, 3, 30, 1, 2, 3, 78
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 99}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A351557(n) = gcd(sigma(n), A019565(n));

Formula

a(n) = gcd(A000203(n), A019565(n)) = gcd(A080398(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351559(n)).

A351558 a(n) = A048675(gcd(n, A019565(n))).

Original entry on oeis.org

0, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 8, 6, 0, 0, 2, 0, 4, 0, 16, 0, 0, 0, 0, 2, 8, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 10, 0, 0, 4, 0, 0, 0, 0, 0, 2, 32, 0, 2, 20, 8, 0, 0, 0, 4, 0, 0, 10, 0, 0, 2, 0, 64, 0, 4, 0, 0, 0, 0, 2, 0, 8, 2, 0, 0, 0, 0, 0, 0, 68, 0, 2, 16, 0, 2, 8, 0, 0, 0, 4, 0, 0, 0, 2, 4, 0, 66
Offset: 0

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[n, Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 102}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351558(n) = A048675(gcd(n, A019565(n)));

Formula

a(n) = A048675(A351556(n)) = A048675(gcd(n, A019565(n))).
a(n) = n AND A087207(n), where AND is bitwise-and, A004198.

A376407 a(0) = 0, and for n > 0, a(n) = a(n-1) + A019565(a(n-1)), where A019565 is the base-2 exp-function.

Original entry on oeis.org

0, 1, 3, 9, 23, 353, 10519, 12086209, 1174153011340170531, 73582975079922326904310062621361286634299329277087298285
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2024

Keywords

Comments

a(10) has 272 digits and a(11) has 1523 digits.
By induction, it is easy to see that formula a(n) = A048675(A376406(n)) implies that from the second term onward, this sequence gives the partial sums of A376406. See comments and examples in that sequence.

Crossrefs

Cf. also A376403 (an analogous sequence for A276076).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A376407(n) = if(!n,0,my(x=A376407(n-1)); x+A019565(x));

Formula

a(n) = A048675(A376406(n)).
a(0) = 0; and for n > 0, a(n) = a(n-1) + A376406(n-1) = Sum_{i=0..n-1} A376406(i).

A379496 a(n) = A019565(1+n) - A019565(A001065(n)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.

Original entry on oeis.org

2, 4, 3, 4, 13, 15, 5, -16, 16, 35, 33, 59, 103, 189, -3, -188, 31, -44, 53, -55, 123, 225, 75, 89, 216, 451, 315, 385, 1153, 2037, 11, -2284, -171, 23, -5, -4160, 193, 225, 69, -247, 271, -1599, 453, 819, 1339, 2499, 141, -309, 422, 312, 605, 65, 2143, 4239, 979, 1985, 2673, 5993, 5003, 2275, 15013, 29991, -165
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Crossrefs

Cf. also A379498.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A379496(n) = (A019565(1+n) - A019565(sigma(n)-n));

Formula

a(n) = A019565(1+n) - A379495(n).
For even n, a(n) = 2*A019565(n) - A379495(n).
For n of the form 4k+1, a(n) = (3/2)*A019565(n) - A379495(n).
Previous Showing 61-70 of 339 results. Next