cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 340 results. Next

A351082 a(n) = Product_{d|n} A019565(A289814(d)); a product obtained from the 2-digits present in ternary expansions of the divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 2, 6, 3, 12, 1, 4, 2, 6, 1, 12, 6, 36, 6, 30, 5, 40, 15, 20, 10, 540, 30, 60, 1, 12, 2, 36, 1, 72, 6, 36, 36, 30, 1, 20, 1, 240, 2, 540, 3, 120, 30, 100, 10, 8100, 15, 600, 90, 900, 30, 210, 28, 1008, 35, 28, 14, 7560, 21, 84, 105, 504, 28, 1260, 7, 504, 210, 3024, 42, 94500, 35, 140, 3150, 700, 420, 18900
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); };
    A351082(n) = { my(m=1); fordiv(n,d,m *= A019565(A289814(d))); (m); };

Formula

a(n) = A019565(A289814(n)) * A293222(n).

A379495 a(n) = A019565(A001065(n)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 15, 2, 30, 5, 7, 2, 11, 2, 21, 14, 210, 2, 110, 2, 165, 42, 105, 2, 65, 15, 11, 70, 385, 2, 273, 2, 2310, 210, 55, 70, 4290, 2, 165, 22, 429, 2, 2145, 2, 91, 26, 231, 2, 595, 7, 546, 110, 1365, 2, 51, 22, 17, 330, 13, 2, 7735, 2, 39, 182, 30030, 66, 1785, 2, 3003, 462, 357, 2, 102102, 2, 91, 286, 17, 66
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A379495(n) = A019565(sigma(n)-n);

A379501 a(n) = (3/2)*A019565((2n-1)^2) - A019565(A001065((2n-1)^2)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.

Original entry on oeis.org

2, 16, 216, 422, 470, 51016, 5082, 4446, 864, 106688, 1301846, 880, 204182, 1985872, 236964, 646310, 1030, 176778, 2799756, 96178962, 563400, 62092576, 1566805968, 27274, 559406, -16252236, 1040774592, 263042394, 7794826, 115781204, 13256922, -16386856, -1230440, 376172, -67188814, 222905278, 13547232, 28352541646
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A379501(n) = { my(osq=((2*n)-1)^2); ((3/2)*A019565(osq) - A019565(sigma(osq)-osq)); };

Formula

a(n) = A379496(A016754(n)) = A019565(1+A016754(n)) - A379495(A016754(n)).
a(n) = (3/2)*A019565(A016754(n)) - A379495(A016754(n)).

A103790 a(n) = the minimum k that makes prime(n)+A019565(k) prime.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 1, 3, 3, 1, 5, 3, 3, 1, 3, 3, 1, 3, 5, 3, 9, 3, 1, 3, 1, 7, 9, 5, 3, 1, 5, 1, 3, 3, 5, 3, 3, 1, 5, 1, 3, 1, 7, 7, 3, 1, 5, 3, 1, 5, 3, 3, 3, 1, 3, 3, 1, 5, 9, 3, 1, 13, 7, 3, 5, 1, 5, 3, 7, 3, 3, 5, 3, 7, 11, 7, 5, 1, 5, 1, 3, 5, 3, 7, 3, 1, 15, 11, 7, 13, 7, 5, 3, 9, 1, 13, 3, 5, 3, 3
Offset: 1

Views

Author

Lei Zhou, Feb 16 2005

Keywords

Comments

All elements except the first one are odd. This suggests a new way looking for large primes candidates.

Examples

			Prime(1)+A019565(0)=2+1=3 is prime, so a(1)=0;
Prime(4)+A019565(3)=7+6=13 is prime, so a(4)=3;
		

Crossrefs

Cf. A019565.

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[npd = Prime[n]; ts = 1; tt = ts; cp = npd + A019565[tt]; While[ ! (PrimeQ[cp]), ts = ts + 1; tt = ts; cp = npd + A019565[ tt]]; Print[ts], {n, 3, 200} ]

A103797 Indices of n such that A019565(n)-1 is prime.

Original entry on oeis.org

2, 3, 7, 9, 11, 21, 27, 29, 31, 39, 41, 47, 51, 53, 55, 61, 63, 67, 71, 81, 89, 91, 107, 113, 121, 123, 129, 131, 135, 139, 143, 149, 151, 157, 159, 163, 169, 175, 179, 183, 187, 191, 197, 199, 207, 211, 217, 223, 235, 241, 251, 259, 261, 269, 279, 281, 287, 295
Offset: 0

Views

Author

Lei Zhou, Feb 22 2005

Keywords

Examples

			A019565(0)=1, 1-1=0 is not prime;
A019565(1)=2, 2-1=1 is not prime;
A019565(2)=3, 3-1=2 is prime, so a(1)=2.
		

Crossrefs

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[cp = A019565[n] - 1; If[PrimeQ[cp], Print[n]], {n, 0, 1000}]

A103799 Indices n such that A019565(n)+2 is prime.

Original entry on oeis.org

0, 2, 4, 6, 10, 12, 14, 16, 22, 24, 26, 34, 36, 38, 44, 46, 50, 62, 64, 66, 70, 74, 78, 82, 84, 90, 92, 96, 104, 106, 116, 118, 124, 130, 132, 138, 142, 144, 150, 154, 162, 164, 170, 172, 176, 186, 190, 194, 224, 230, 242, 252, 258, 262, 264, 270, 274, 278, 302, 308
Offset: 1

Views

Author

Lei Zhou, Feb 22 2005

Keywords

Examples

			A019565(0)=1, 1+2=3 is prime, so a(1)=0;
A019565(1)=2, 2+2=4 is not prime,
A019565(2)=3, 3+2=5 is prime, so a(2)=2;
		

Crossrefs

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[cp = A019565[n] + 2; If[PrimeQ[cp], Print[n]], {n, 0, 1000}]

A288570 Partial sums of A019565.

Original entry on oeis.org

1, 3, 6, 12, 17, 27, 42, 72, 79, 93, 114, 156, 191, 261, 366, 576, 587, 609, 642, 708, 763, 873, 1038, 1368, 1445, 1599, 1830, 2292, 2677, 3447, 4602, 6912, 6925, 6951, 6990, 7068, 7133, 7263, 7458, 7848, 7939, 8121, 8394, 8940, 9395, 10305, 11670, 14400, 14543
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2017

Keywords

Crossrefs

Cf. A019565.

Programs

Formula

G.f.: (1/(1 - x)) * Product_{k>=0} (1 + prime(k+1)*x^(2^k)). - Ilya Gutkovskiy, Aug 18 2021

A293444 a(n) = A293442(A293442(n)), where A293442 is multiplicative with a(p^e) = A019565(e).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 4, 4, 2, 6, 2, 4, 3, 3, 3, 3, 2, 3, 3, 6, 2, 6, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 6, 3, 6, 3, 3, 2, 6, 2, 3, 4, 4, 3, 6, 2, 4, 3, 6, 2, 6, 2, 3, 4, 4, 3, 6, 2, 4, 2, 3, 2, 6, 3, 3, 3, 6, 2, 6, 3, 4, 3, 3, 3, 6, 2, 4, 4, 3, 2, 6, 2, 6, 6
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A293442(A293442(n)).
A048675(a(n)) = A064547(n) = A001222(A293442(n)).

A303770 Divisor-or-multiple permutation of squarefree numbers: a(n) = A019565(A303773(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 10, 30, 210, 42, 21, 7, 14, 70, 35, 105, 1155, 165, 55, 11, 22, 66, 33, 231, 77, 154, 462, 2310, 330, 110, 770, 385, 5005, 455, 91, 13, 26, 78, 39, 195, 65, 130, 390, 2730, 182, 546, 273, 1365, 15015, 3003, 429, 143, 286, 858, 4290, 1430, 715, 2145, 36465, 561, 51, 17, 34, 102, 510, 170, 85, 255, 1785, 357, 119, 238, 714
Offset: 0

Views

Author

Antti Karttunen, May 05 2018

Keywords

Comments

Each a(n+1) is either a divisor or a multiple of a(n).

Crossrefs

Cf. A303760 (a simpler variant).

Programs

Formula

a(n) = A019565(A303773(n)).

A319680 a(n) = Product_{d|n} A019565(d)^[moebius(n/d) = +1].

Original entry on oeis.org

2, 3, 6, 5, 10, 30, 30, 7, 14, 42, 42, 105, 70, 210, 420, 11, 22, 198, 66, 165, 220, 330, 330, 385, 154, 462, 462, 1155, 770, 207900, 2310, 13, 52, 78, 156, 975, 130, 390, 780, 455, 182, 147420, 546, 1365, 5460, 2730, 2730, 1001, 286, 4290, 1716, 2145, 1430, 30030, 8580, 5005, 4004, 6006, 6006, 7882875, 10010, 30030, 180180, 17, 68
Offset: 1

Views

Author

Antti Karttunen, Sep 29 2018

Keywords

Crossrefs

Cf. A019565, A300831, A319681 (rgs-transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319680(n) = { my(m=1); fordiv(n,d,if((1==moebius(n/d)), m *= A019565(d))); m; };

Formula

a(n) = A019565(n) * A300831(n).
Previous Showing 81-90 of 340 results. Next