cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A306610 a(n) = (2*cos(Pi/15))^(-n) + (2*cos(7*Pi/15))^(-n) + (2*cos(11*Pi/15))^(-n) + (2*cos(13*Pi/15))^(-n), for n >= 1.

Original entry on oeis.org

4, 24, 109, 524, 2504, 11979, 57299, 274084, 1311049, 6271254, 29997829, 143491199, 686373809, 3283190949, 15704770004, 75121978804, 359337430474, 1718849676159, 8221921677724, 39328626006254, 188124003629279, 899869747188249, 4304424455586134
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

-a(n) is the coefficient of x in the minimal polynomial for (2*cos(Pi/15))^n, for n >= 1. The coefficients of -x^3 are A306603(n), and those of x^2 are A306611(n).
a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = 4, e_2 = -4, e_3 = -1 and e_4 = 1. The arguments are e_j(1/x_1, 1/x_2, 1/x_3, 1/x_4), for j = 1..4, with the zeros {x_i}{i=1..4} of the minimal polynomial of 2*cos(Pi/15), appearing under the negative powers of the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A306603 (positive powers of these cosines), A306611, A324602.

Programs

  • Mathematica
    Table[Round[N[Sum[(2 Cos[k Pi/15])^(-n), {k,{1,7,11,13}}],50]],{n,1,30}]

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3) - a(n-4).
G.f.: x*(-4x^3 -3x^2 +8x +4)/(x^4 +x^3 -4x^2 -4x +1).
a(n) = round((2*cos(7*Pi/15))^(-n)) for n >= 3.

A306611 The middle coefficient in the minimal polynomial for (2*cos(Pi/15))^n.

Original entry on oeis.org

-4, 26, -49, 246, -619, 2621, -7774, 30126, -97879, 363131, -1237504, 4497801, -15702574, 56538746, -199764994, 716265246, -2545683874, 9110943101, -32474838004, 116135818131, -414537600379, 1481979727826, -5293483738474, 18921861083121, -67610126265619, 241664630238746
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

From Wolfdieter Lang, May 01 2019: (Start)
rho(15) = 2*cos(Pi/15) = 2*A019887 gives the length ratio of the smallest diagonal and the side of a regular 15-gon. The minimal polynomial of rho(15) is C(n, x) = x^4 + x^3 - 4*x^2 - 4*x + 1, with zeros x_0 = rho(15), x_1 = 2*cos(7*Pi/15), x_2 = 2*cos(11*Pi/15) and x_3 = 2*cos(13*Pi/15). See A187360, also for a W. Lang link.
The minimal polynomial of rho(1)^n, for n >= 1, considered here, is C(15,n,x) = Product_{j=0..3} (x - x_j^n) = x^4 - A_1(n)x^3 + A_2(n)*x^2 - A_3(n)*x + A_4(n). The coefficients are the elementary symmetric functions A_j(n) = sigma_j((x_0)^n, (x_1)^n, (x_2)^n, (x_3)^n), for j = 1, 2, 3, and A_4(n) = (A_4(1))^n = 1. A_1(n) = A306603(n), A_2(n) = a(n), and A_3(n) = A306610(n), for n >= 1.
Thanks to Greg Dresden for sending me a proof that C(15,n,x) has integer coefficients and does not factor over the rationals for n >= 1. (End)

Crossrefs

Cf. A306603 (which gives the negative coefficient of x^3 in minimal polynomial for (2 cos(Pi/15))^n) and A306610 (likewise for the coefficient of x).
Cf. A019887 (cos(Pi/15)), A187360.

Programs

  • Mathematica
    Table[Coefficient[MinimalPolynomial[(2Cos[Pi/15])^n,x],x,2],{n,1,40}]
  • PARI
    Vec(-x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Feb 28 2019

Formula

a(n) = -4*a(n-1) + 5*a(n-2) + 25*a(n-3) + 5*a(n-4) - 4*a(n-5) - a(n-6).
G.f.: -x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)). - Colin Barker, Feb 28 2019

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A307886 Array of coefficients of the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 (ascending powers).

Original entry on oeis.org

1, -4, -4, 1, 1, 1, -24, 26, -9, 1, 1, -109, -49, 1, 1, 1, -524, 246, -29, 1, 1, -2504, -619, -4, 1, 1, -11979, 2621, -99, 1, 1, -57299, -7774, -34, 1, 1, -274084, 30126, -349, 1, 1, -1311049, -97879, -179, 1, 1, -6271254, 363131, -1254, 1, 1, -29997829, -1237504, -824, 1
Offset: 1

Views

Author

Greg Dresden and Wolfdieter Lang, May 02 2019

Keywords

Comments

The length of each row is 5.
The minimal polynomial of (2*cos(Pi/15))^n, for n >= 1, is C(15, n, x) = Product_{j=0..3} (x - (x_j)^n) = Sum_{k=0} T(n, k) x^k, where x_0 = 2*cos(Pi/15), x_1 = 2*cos(7*Pi/15), x_2 = 2*cos(11*Pi/15), and x_3 = 2*cos(13*Pi/15) are the zeros of C(15, 1, x) with coefficients given in A187360 (row n=15).

Examples

			The rectangular array T(n, k) begins:
n\k 0      1      2      3      4
---------------------------------
1:  1     -4     -4      1      1
2:  1    -24     26     -9      1
3:  1   -109    -49      1      1
4:  1   -524    246    -29      1
5:  1  -2504   -619     -4      1
6:  1 -11979   2621    -99      1
7:  1 -57299  -7774    -34      1
...
		

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A306603, A306610, A306611.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[MinimalPolynomial[(2*Cos[\[Pi]/15])^n, x], x], {n, 1, 15}]]

Formula

T(n,k) = the coefficient of x^k in C(15, n, x), n >= 1, k=0,1,2,3,4, with C(15, n, k) the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 as defined above.
T(n, 0) = T(n, 4) = 1. T(n, 1) = -A306610(n), T(n, 2) = A306611(n), T(n, 3) = -A306603(n), n >= 1.
Previous Showing 11-14 of 14 results.