A174844 Primes that generate three other primes when 2, 6, and 8, respectively, are subtracted from each digit of their decimal representations.
9898898899, 889898999999, 889989889889, 898888889989, 989899998889, 999988988989, 988898889999899, 989998888989889, 98888888989989899, 99999998998988999, 888898989989989999, 888998889889898899, 889888889998888999, 889888898999988989, 889988888998998889
Offset: 1
Examples
9898898899 is prime and so are 7676676677, 3232232233, and 1010010011, so it is a term. Although 9349, 9349-2222=7127, 9349-6666=2683, and 9349-8888=461 are four primes, 9349 is not a term as subtracting 6 or 8 from the digits 3 and 4 is not possible (no "borrowing" is permitted).
Links
- Robert Israel, Table of n, a(n) for n = 1..1188
Programs
-
Maple
Res:= NULL: count:= 0: for d from 2 while count < 100 do v:= (10^d-1)/9; for m from 1 to d do if m mod 3 <> 0 and 2*d+m mod 3 <> 0 then for S in combinat:-choose([$1..(d-2)],m-1) do q:= 1+add(10^i,i=S); if andmap(isprime, [q, 2*v+q, 6*v+q, 8*v+q]) then count:= count+1; Res:= Res, 8*v+q; fi od; fi od; od: sort([Res]); # Robert Israel, Nov 14 2022
-
Mathematica
okQ[n_]:=Module[{idn=IntegerDigits[n]},And@@PrimeQ[FromDigits/@ {idn-2, idn-6, idn-8}]]; Select[Flatten[Table[Select[FromDigits/@ Tuples[ {8,9},n], PrimeQ],{n,18}]],okQ] (* Harvey P. Dale, Jul 27 2011 *)
-
PARI
{/* Program based on that of M. F. Hasler in A020472. */ for(nd=1, 20, p=vector(nd, i, 10^(nd-i))~; r=(10^nd-1)/9; forvec(v=vector(nd, i, [8+(i==nd), 9]), q=v*p; isprime(q) && isprime(q-2*r ) && isprime(q-6*r ) && isprime(q-8*r ) && print1(q", ")))}
-
Python
from sympy import isprime from itertools import count, islice, product def agen(): # generator of terms for d in count(2): subs = list(map(int, ["2"*d, "6"*d, "8"*d])) for first in product("89", repeat=d-1): t = int("".join(first) + "9") if isprime(t) and all(isprime(t-s) for s in subs): yield t print(list(islice(agen(), 15))) # Michael S. Branicky, Nov 15 2022
Comments