cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A098233 Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 7, 3, 1, 1, 13, 46, 47, 25, 6, 1, 1, 40, 295, 587, 516, 235, 65, 10, 1, 1, 121, 1846, 6715, 9690, 7053, 3006, 800, 140, 15, 1, 1, 364, 11347, 73003, 170051, 189458, 119211, 46795, 12201, 2170, 266, 21, 1, 1, 1093, 68986, 768747
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

Comments

Also gives number T(n, k) of partitions of the multiset {1, 1, 2, 2, ..., n, n} into k nonempty subsets, for 2 <= k <= 2n. - Marko Riedel, Jan 22 2023

Examples

			The first few polynomials are:
  1,
  x^2,
  x^2+x^3+x^4,
  x^2+4x^3+7x^4+3x^5+x^6,
  x^2+13x^3+46x^4+47x^5+25x^6+6x^7+x^8,
  x^2+40x^3+295x^4+587x^5+516x^6+235x^7+65x^8+10x^9+x^10,
  ...
Triangle starts:
  1;
  1;
  1,  1,   1;
  1,  4,   7,   3,   1;
  1, 13,  46,  47,  25,   6,  1;
  1, 40, 295, 587, 516, 235, 65, 10, 1;
  ...
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Cf. A360037, A360038, A360039, A020554 (row sums).

A020558 Number of ordered multigraphs on n labeled edges (without loops).

Original entry on oeis.org

1, 1, 4, 27, 274, 3874, 71995, 1682448, 47840813, 1615315141, 63566760077, 2873099980637, 147384910116793, 8496500896980637, 545845612016485842, 38797966029876716897, 3032005571734589578076
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Formula

E.g.f.: exp((3*x-2)/(2-2*x))*Sum(1/(n!*(1-x)^binomial(n, 2)), n = 0 .. infinity). a(n) = Sum((-1)^(n-k)*Stirling1(n, k)*A020554(k), k=0..n). - Vladeta Jovovic, May 02 2004
E.g.f.: exp(x/(2-2*x))*Sum(A020556(n)*(-log(1-x)/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004

A175707 Number of ways to put n copies of 1,2,3,4 into sets.

Original entry on oeis.org

1, 15, 139, 862, 4079, 15791, 52450, 154279, 411180, 1009741, 2314278, 5000125, 10264997, 20152950, 38037517, 69323949, 122448455, 210271756, 351989816, 575711716, 921889652, 1447822620, 2233501928, 3389114724, 5064582169, 7461570579, 10848490675, 15579077786, 22115241763, 31054971635, 43166197978, 59427633555, 81077755892, 109673237289, 147158299390, 195946638641
Offset: 0

Views

Author

Keywords

Comments

Related to generalized Bell Numbers.
The n copies of each digit must be in different sets, and the sets must be nonempty.
Other definition: Number of ways to distribute n copies of 1,2,3,4 into an arbitrary number of (nonempty) sets. Due to the nature of sets, the same digit may not be several times in the same set.

Examples

			For n=1, the solution is the fourth term of Bell numbers A000110.
For n=2, one way to partition 2 copies of 1, 2 copies of 2, 2 copies of 3 and 2 copies of 4 is {1}{2}{34}{12}{34}. On the other hand {112}{34}{23}{4} is not allowed since the same numbers are in the same set {112}.
		

Crossrefs

Programs

  • Maple
    a:= n-> (5382*n^11 +236808*n^10 +4643760*n^9 +53507520*n^8 +402098796*n^7 +2067612624*n^6 +7421736960*n^5 +18616942080*n^4 +32101468047*n^3 +36555545268*n^2 +25131098880*n +8024016000 +7016625*(-1)^n*n^3 +84199500*(-1)^n*n^2 +359251200*(-1)^n*n +538876800*(-1)^n) /(2^11*3^7*5^2*7*11) +5/3^6*(-1)^n * (sin(n*Pi/3)/sqrt(3)+ cos(n*Pi/3));
    seq(a(n), n=0..40);
    seq(SeqBrnDJ(n,4)[5], n=1..6); # using the Maple package BABUSHKAS (see links)
  • Mathematica
    LinearRecurrence[{7, -17, 8, 36, -60, 4, 56, -22, -22, -22, 56, 4, -60, 36, 8, -17, 7, -1}, {1, 15, 139, 862, 4079, 15791, 52450, 154279, 411180, 1009741, 2314278, 5000125, 10264997, 20152950, 38037517, 69323949, 122448455, 210271756}, 36] (* Jean-François Alcover, Nov 13 2018 *)

Formula

a(n) = (5382*n^11 +236808*n^10 +4643760*n^9 +53507520*n^8 +402098796*n^7 +2067612624*n^6 +7421736960*n^5 +18616942080*n^4 +32101468047*n^3 +36555545268*n^2 +25131098880*n +8024016000 +7016625*(-1)^n*n^3 +84199500*(-1)^n*n^2 +359251200*(-1)^n*n +538876800*(-1)^n) / (2^11*3^7*5^2*7*11) +5/3^6*(-1)^n * (sin(n*Pi/3)/sqrt(3) +cos(n*Pi/3)).
Recurrence: a(n) -7*a(n-1) +17*a(n-2) -8*a(n-3) -36*a(n-4) +60*a(n-5) -4*a(n-6) -56*a(n-7) +22*a(n-8) +22*a(n-9) +22*a(n-10) -56*a(n-11) -4*a(n-12) +60*a(n-13) -36*a(n-14) -8*a(n-15) +17*a(n-16) -7*a(n-17) +a(n-18) = 0.
G.f.: (x^10 +8*x^9 +51*x^8 +136*x^7 +252*x^6 +300*x^5 +252*x^4 +136*x^3 +51*x^2 +8*x+1) / ((x^2+x+1)*(x+1)^4*(x-1)^12).
Previous Showing 11-13 of 13 results.