A257137
Numbers n such that n, n+4, n+6, n+10, n+16, n+18, n+24, n+28, n+30, n+34, n+40, n+46 and n+48 are all prime.
Original entry on oeis.org
13, 4289907938811613, 5693002600430263, 21817283854511263, 48290946353555023, 51165618791484133, 53094081535451893, 70219878257874463, 98633358468021313, 99142644093930373, 104814760374339133, 166784569423739203, 167841416726358493, 184601252515266523, 263331429949004353, 272039012072134243, 339094624362619243, 363319822006646623, 363760043662280383, 437335541550793003, 455289126169953193
Offset: 1
Initial members of all of the first prime k-tuplets:
-
is(n)=isp=isprime; isp(n) && isp(n+4) && isp(n+6) && isp(n+10) && isp(n+16) && isp(n+18) && isp(n+24) && isp(n+28) && isp(n+30) && isp(n+34) && isp(n+40) && isp(n+46) && isp(n+48) \\ Anders Hellström, Sep 05 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16, 4,6,10,16,18,24,28,30,34,40,46,48); # Dana Jacobsen, Oct 07 2015
A257138
Numbers n such that n, n+4, n+6, n+10, n+16, n+18, n+24, n+28, n+30, n+34, n+36, n+46 and n+48 are all prime.
Original entry on oeis.org
1707898733581273, 3266590043460823, 4422879865247923, 10907318641689703, 32472302129057023, 52590359764282573, 60229684381540753, 67893346321234513, 93179596929433093, 115458868925574253, 140563537593599353, 142977538681261363, 148877505784397623, 166362638531783773, 232442516762530153, 236585787518684683, 255933372890105143, 317294052871840123, 325853825645632363, 337188071215909993, 344447962857168403
Offset: 1
Initial members of all of the first prime k-tuplets:
-
Q=isprime;
isok(n) = Q(n) && Q(n+4) && Q(n+6) && Q(n+10) && Q(n+16) && Q(n+18) && Q(n+24) && Q(n+28) && Q(n+30) && Q(n+34) && Q(n+36) && Q(n+46) && Q(n+48); \\ Michel Marcus, Aug 04 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1, 10**16, 4,6,10,16,18,24,28,30,34,36,46,48); # Dana Jacobsen, Oct 09 2015
A257139
Numbers n such that n, n+2, n+6, n+8, n+12, n+18, n+20, n+26, n+30, n+32, n+36, n+42 and n+48 are all prime.
Original entry on oeis.org
11, 7933248530182091, 20475715985020181, 21817283854511261, 33502273017038711, 40257009922154141, 49242777550551701, 49600456951571411, 75093141517810301, 84653373093824651, 119308586807395871, 129037438367672951, 129706953139869221, 151242381725881331, 158947009165390331, 161216594737343261, 167317340088093311, 176587730173540571, 178444395317213141, 197053322268438521, 301854920123441801
Offset: 1
Initial members of all of the first prime k-tuplets:
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16,2,6,8,12,18,20,26,30,32,36,42,48); # Dana Jacobsen, Oct 10 2015
A257140
Numbers n such that n, n+2, n+8, n+14, n+18, n+20, n+24, n+30, n+32, n+38, n+42, n+44 and n+48 are all prime.
Original entry on oeis.org
7697168877290909, 10071192314217869, 11987120084474369, 28561589689237439, 62321320746357689, 73698766709402669, 75046774774314359, 79287805466244209, 98551408299919409, 136720189890477209, 225735856757596019, 234065221633327919, 302834818301440259, 360345440708336099, 385443070970192069, 387494664213890249, 466256026285842809, 539043082132918379, 570108181108560929, 610147978081735109
Offset: 1
Initial members of all of the first prime k-tuplets:
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48); # Dana Jacobsen, Oct 13 2015
A257141
Numbers n such that n, n+2, n+12, n+14, n+18, n+20, n+24, n+30, n+32, n+38, n+42, n+44 and n+48 are all prime.
Original entry on oeis.org
10527733922579, 15991086371740199, 22443709342850669, 69759046409087909, 94415460183744419, 164873121596539229, 197053322268438509, 212971209388223159, 215768926871613989, 248170682800139819, 270109976153617319, 326374793491266239, 341896216415143109, 341987213500572359, 362035072661912369, 401062754451879239, 441180406661470349, 450928996714672349, 503035098004929209, 533306698691196149
Offset: 1
Initial members of all of the first prime k-tuplets:
-
isok(n)={isp=isprime;isp(n) &&isp(n+2)&&isp(n+12) &&isp(n+14) &&isp(n+18)&&isp(n+20)&&isp(n+24) &&isp(n+30) &&isp(n+32) &&isp(n+38) &&isp(n+42)&&isp(n+44)&&isp(n+48)} \\ Anders Hellström, Sep 05 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1, 10**15, 2,12,14,18,20,24,30,32,38,42,44,48); # Dana Jacobsen, Oct 13 2015
A257166
Initial members of prime 14-tuplets.
Original entry on oeis.org
11, 21817283854511261, 79287805466244209, 841262446570150721, 1006587882969594041, 2682372491413700201, 2714623996387988519, 5009128141636113611, 5012524663381750349, 6120794469172998449, 6195991854028811669, 6232932509314786109, 6808488664768715759, 7126352574372296381, 7993822923596334941, 10756418345074847279, 11319107721272355839
Offset: 1
Initial members of all of the first prime k-tuplets:
A257167
Numbers n such that n, n+2, n+6, n+8, n+12, n+18, n+20, n+26, n+30, n+32, n+36, n+42, n+48 and n+50 are all prime.
Original entry on oeis.org
11, 21817283854511261, 841262446570150721, 1006587882969594041, 2682372491413700201, 5009128141636113611, 7126352574372296381, 7993822923596334941, 12870536149631655611, 15762479629138737611, 22811391659969177381, 25593071201116914611, 25908823282383706781, 42408988436795325461, 44360646117391789301, 54533311498517797061, 54872625531142644341, 55603189618237916771, 60815831883653681951
Offset: 1
- Dana Jacobsen, Table of n, a(n) for n = 1..185 [first 57 terms computed by Betsis, Säfholm, Forbes, Hadley, Vlesycit, and Waldvogel (1982-2009)]
- Tony Forbes and Norman Luhn, Smallest Prime k-tuplets
- Norman Luhn, Table of n, a(n) for n = 1..919
Initial members of all of the first prime k-tuplets:
-
use ntheory ":all"; say for sieve_prime_cluster(1, 10**17, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50); # Dana Jacobsen, Oct 18 2015
A257168
Numbers n such that n, n+2, n+8, n+14, n+18, n+20, n+24, n+30, n+32, n+38, n+42, n+44, n+48 and n+50 are all prime.
Original entry on oeis.org
79287805466244209, 2714623996387988519, 5012524663381750349, 6120794469172998449, 6195991854028811669, 6232932509314786109, 6808488664768715759, 10756418345074847279, 11319107721272355839, 12635619305675250719, 14028155447337025829, 14094050870111867489, 14603617704434643719, 14777669568340323479, 15420967329931107779, 16222575536498135639, 16624441191356313149, 17367037621075657349, 19289576760019250519
Offset: 1
Initial members of all of the first prime k-tuplets:
-
use bigint; use ntheory ":all"; say for sieve_prime_cluster(1, 10**17, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50); # Dana Jacobsen, Oct 18 2015
A257169
Initial members of prime 15-tuplets.
Original entry on oeis.org
11, 17, 1158722981124148367, 1240068005144831867, 2243290806352501637, 3172206835341609797, 8402171449067476007, 9422138120166964847, 14094050870111867483, 16222575536498135633, 16485850001899818467, 16679857156627718057, 17905159760365247387, 26082001869529405727, 27367669288651556693, 28025081332808782877, 30304192466683200797, 34827058725936837287, 36351118555624575707, 44333554877816671757
Offset: 1
Initial members of all of the first prime k-tuplets:
A257304
Numbers n such that n, n+2, n+6, n+8, n+12, n+18, n+20, n+26, n+30, n+32, n+36, n+42, n+48, n+50 and n+56 are all prime.
Original entry on oeis.org
11, 44360646117391789301, 80846604473064395081, 85542881495337691541, 113615698477681825541, 116591588863353569081, 140245881111654813611, 204185491710368653601, 227209370616659726411, 238931301405879137171, 441927344360107210721, 457968514558418508761
Offset: 1
Initial members of all of the first prime k-tuplets:
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16, 2,6,8,12,18,20,26,30,32,36,42,48,50,56); # Dana Jacobsen, Oct 18 2015
Comments