cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A347851 Primes at lower end of record gaps between prime octuplets given by A347850.

Original entry on oeis.org

17, 1277, 113147, 2580647, 20737877, 171958667, 311725847, 408936947, 701679047, 1804302107, 4955335367, 7449267797, 14005112897, 22741837817, 52998494597, 61033681757, 74325366107, 78271296197, 90479441177, 218018750687, 236874793697, 560125662977, 657582657857
Offset: 1

Views

Author

Hugo Pfoertner and Norman Luhn, Sep 16 2021

Keywords

Examples

			See A347850.
		

Crossrefs

Formula

a(n) == 17 (mod 30).

A350828 Number of prime octuplets with initial member (A065706) between 10^(n-1) and 10^n.

Original entry on oeis.org

0, 2, 0, 1, 1, 3, 3, 9, 28, 136, 541, 2936
Offset: 1

Views

Author

M. F. Hasler, Mar 01 2022

Keywords

Comments

"Between 10^(n-1) and 10^n" is equivalent to saying "with n (decimal) digits".
A prime octuplet is a sequence of 8 consecutive primes (p1, ..., p8) of minimal diameter p8 - p1 = 26.
Terms a(1)-a(12) computed from b-file a(1..18123) for A065706. Using Luhn's database, cf. LINKS, one can get 3 more terms.
So far, the last term of all the octuplets has the same number of digits as the initial term.

Examples

			a(1) = a(3) = 0 because there is no single-digit nor a 3-digit prime initial member of a prime octuplet.
a(2) = 2 because 11 and 17 are the only 2-digit members of A065706, i.e., primes to start a prime octuplet.
a(4) = a(5) = 1 because 1277 (resp. 88793) is the only prime with 4 (resp. 5) digits to start a prime octuplet.
Then there are a(6) = 3 six-digit primes, 113147, 284723 and 855713, which start a prime octuplet.
		

Crossrefs

Cf. A065706 (initial members p of prime octuplets (p, ..., p+26)), A022011, A022012, A022013 (idem, specifically for each of the three possible patterns).
Cf. A350825, A350826, A350827: similar for quintuplets, sextuplets and septuplets.

Programs

  • PARI
    (D(v)=v[^1]-v[^-1])( [setsearch(A065706,10^n,1) | n<-[0..12]] ) \\ where A065706 is a vector of at least 3660 terms of that sequence.

A375648 Products of prime 8-tuples (p, p+6, p+8, p+14, p+18, p+20, p+24, p+26) where p = A022013(n).

Original entry on oeis.org

3868985835982814590518552822749329543261, 43207320984601757696213691690377119115644261, 287530494211069388143263747303929618940138523261, 2991325021830996455943969680355510324042937309261, 3433715221252595293789329211184553889095776281330363261, 523198428668721638888114210837839571392856841008842698982189261
Offset: 1

Views

Author

Michael De Vlieger, Aug 24 2024

Keywords

Comments

Primes p in A022013 belong to 173 (mod 210). Thus a(n) is congruent to the product of residues {173, 179, 181, 187, 191, 193, 197, 199} (mod 210), i.e., 1 (mod 210).
Gaps between primes are {6, 2, 6, 4, 2, 4, 2}.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 7]] &, Import["https://oeis.org/A022013/b022013.txt", "Data"][[;; 12, -1]]]

A145315 Numbers k for which the set {30*k-13, 30*k-11, 30*k-7, 30*k-1, 30*k+1, 30*k+7, 30*k+11, 30*k+13} forms a symmetrical prime octuplet.

Original entry on oeis.org

1, 43, 3772, 86022, 691263, 1940280, 2445785, 2539018, 3355288, 4492167, 4598112, 5517709, 5731956, 7466941, 8409234, 9817872, 10324700, 10390862, 12138468, 13631232, 17181592, 17382707, 17609073, 20633677, 20897582, 22760333, 23389302, 32968102, 36051016, 37215088
Offset: 1

Views

Author

Andrey V. Kulsha, Oct 07 2008

Keywords

Comments

a(n) is always +/- 1 (mod 7).

Crossrefs

Cf. A022012.

Programs

  • Mathematica
    spoQ[n_]:=Module[{c=30n},And@@PrimeQ[{c-13,c-11,c-7,c-1,c+1,c+7,c+11, c+13}]]; Select[Range[23000000],spoQ] (* Harvey P. Dale, Oct 10 2011 *)

Formula

a(n) = (A022012(n) + 13)/30. - Hugo Pfoertner, Nov 08 2022

A357890 a(n) = (A022013(n) - 173)/210.

Original entry on oeis.org

422, 1355, 4074, 5460, 31242, 329316, 353648, 1038255, 1246060, 1440679, 4593664, 6382389, 6669205, 6773694, 8748381, 9343041, 10085055, 10711252, 10819136, 12181959, 12804411, 13683806, 14044105, 15616253, 19232028, 20795482, 21014272, 25076295, 26366476, 27457318
Offset: 1

Views

Author

Hugo Pfoertner, Nov 18 2022

Keywords

Comments

Linear conversion of the initial members of prime octuplets of type p + {0, 6, 8, 14, 18, 20, 24, 26}.
Numbers k such that 210*k+173, 210*k+179, 210*k+181, 210*k+187, 210*k+191, 210*k+193, 210*k+197, and 210*k+199 are all primes. - Jianing Song, Nov 18 2022

Crossrefs

Cf. A182393 (similar for type p + {0, 2, 6, 8, 12, 18, 20, 26}).
Cf. A145315 (minus 1, similar for type p + {0, 2, 6, 12, 14, 20, 24, 26}).
Subsequence of A357889.

A382285 Initial members of prime octuplets (p, p+4, p+12, p+24, p+28, p+40, p+48, p+52), where all primes are consecutive primes.

Original entry on oeis.org

241639, 44533249, 120833809, 245843149, 480454939, 547838359, 945331939, 1272712579, 1318911019, 1334157859, 1413122899, 1801178629, 1977960949, 2708995099, 3073533559, 3234255499, 3359304829, 3485412349, 3836960419, 4202567899, 4311168259, 4984840999, 5044981129
Offset: 1

Views

Author

Federico Salas, Mar 20 2025

Keywords

Comments

All gaps are twice the length of respective gaps in the prime octuplet form, (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26). See A022012 for initial members of that pattern.
Terms are congruent to 19 (mod 30).
It is conjectured that there is an infinite number of primes for every admissible k-tuple.

Crossrefs

Cf. A022012.

Programs

  • PARI
    list(lim) = {my(d0 = [4, 8, 12, 4, 12, 8, 4], s = vecsum(d0), d = vector(7, i, prime(i+1) - prime(i)), prv = 19); forprime(p = 23, lim, d = concat(vecextract(d, "^1"), p - prv); if(d == d0, print1(p - s, ", ")); prv = p);} \\ Amiram Eldar, Mar 21 2025

Extensions

More terms from Amiram Eldar, Mar 21 2025

A382639 Initial members of prime 16-tuples containing two prime octuplets at minimum distance.

Original entry on oeis.org

10458834002271815117, 26476006821087640697, 44350865905809142637, 54014646858393564377, 62155369550078511587, 253586253591518370557, 304079924911990894547, 423291158347150012877, 511505988322414165037, 512761727903842750367, 644424770171034352457, 675759858713748355427
Offset: 1

Views

Author

Federico Salas, Apr 01 2025

Keywords

Comments

Prime 16-tuples are in the form, (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26, p+60, p+62, p+66, p+72, p+74, p+80, p+84, p+86).
Prime octuplets are in the form, (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26). See A022012 for initial members of that pattern.

Crossrefs

Cf. A022012.
Previous Showing 41-47 of 47 results.